Application of Modeling and Simulation in the Development of Protein Drugs

Chapter
Part of the AAPS Advances in the Pharmaceutical Sciences Series book series (AAPS, volume 1)

Abstract

Protein drugs have a variety of molecular characteristics, functional properties, and pharmacokinetic characteristics that are uniquely different from small molecule drugs. The pharmacokinetics of protein drugs are often intricately linked to the biology of the drug target and the pharmacological properties of the drug. Mechanistic PK-PD models can be built to describe these unique drug characteristics and simulate nonclinical and clinical outcomes. PK-PD modeling and simulation can be applied from the earliest stages of drug discovery to late-stage clinical development. The application of model-based drug discovery and development can improve the probability of successful development of protein drugs.

Keywords

Radionuclide Interferon Paclitaxel Methotrexate Neutropenia 

References

  1. Ackerman ME, Pawlowski D, Wittrup KD (2008) Effect of antigen turnover rate and expression level on antibody penetration into tumor spheroids. Mol Cancer Ther 7:2233–2240PubMedCrossRefGoogle Scholar
  2. Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK et al (2001) High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 61:4750–4755PubMedGoogle Scholar
  3. Agoram BM (2009) Use of pharmacokinetic/pharmacodynamic modelling for starting dose selection in first-in-human trials of high-risk biologics. Br J Clin Pharmacol 67:153–160PubMedCrossRefGoogle Scholar
  4. Allegaert K, Anderson BJ, Naulaers G, de Hoon J, Verbesselt R, Debeer A et al (2004) Intravenous paracetamol (propacetamol) pharmacokinetics in term and preterm neonates. Eur J Clin Pharmacol 60:191–197PubMedCrossRefGoogle Scholar
  5. Anderson BJ, Holford NH (2008) Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol 48:303–332PubMedCrossRefGoogle Scholar
  6. Anderson BJ, Woollard GA, Holford NH (2000) A model for size and age changes in the pharmacokinetics of paracetamol in neonates, infants and children. Br J Clin Pharmacol 50:125–134PubMedCrossRefGoogle Scholar
  7. Bauer RJ, Gibbons JA, Bell DP, Luo ZP, Young JD (1994) Nonlinear pharmacokinetics of recombinant human macrophage colony-stimulating factor (M-CSF) in rats. J Pharmacol Exp Ther 268:152–158PubMedGoogle Scholar
  8. Bauer RJ, Dedrick RL, White ML, Murray MJ, Garovoy MR (1999) Population pharmacokinetics and pharmacodynamics of the anti-CD11a antibody hu1124 in human subjects with psoriasis. J Pharmacokinet Biopharm 27:397–420PubMedCrossRefGoogle Scholar
  9. Betts AM, Clark TH, Yang J, Treadway JL, Li M, Giovanelli MA et al (2010) The application of target information and preclinical pharmacokinetic/pharmacodynamic modeling in predicting clinical doses of a Dickkopf-1 antibody for osteoporosis. J Pharmacol Exp Ther 333:2–13PubMedCrossRefGoogle Scholar
  10. Bruno R, Washington CB, Lu JF, Lieberman G, Banken L, Klein P (2005) Population pharmacokinetics of trastuzumab in patients with HER2+ metastatic breast cancer. Cancer Chemother Pharmacol 56:361–369PubMedCrossRefGoogle Scholar
  11. Dall’Acqua WF, Woods RM, Ward ES, Palaszynski SR, Patel NK, Brewah YA et al (2002) Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences. J Immunol 169:5171–5180PubMedGoogle Scholar
  12. Davda JP, Jain M, Batra SK, Gwilt PR, Robinson DH (2008) Int Immunopharmacol 8(3):401–413Google Scholar
  13. Dornhorst AC (1951) The interpretation of red cell survival curves. Blood 6:1284–1292PubMedGoogle Scholar
  14. Eadie GS, Brown IW Jr (1953) Red blood cell survival studies. Blood 8:1110–1136PubMedGoogle Scholar
  15. Ferl GZ, Wu AM, DiStefano JJ III (2005) A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn). Ann Biomed Eng 33:1640–1652PubMedCrossRefGoogle Scholar
  16. Galluppi GR, Rogge MC, Roskos LK, Lesko LJ, Green MD, Feigal DW Jr et al (2001) Integration of pharmacokinetic and pharmacodynamic studies in the discovery, development, and review of protein therapeutic agents: a conference report. Clin Pharmacol Ther 69:387–399PubMedCrossRefGoogle Scholar
  17. Garg A, Balthasar JP (2007) Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn 34:687–709PubMedCrossRefGoogle Scholar
  18. Gibiansky L, Gibiansky E, Kakkar T, Ma P (2008) Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn 35:573–591PubMedCrossRefGoogle Scholar
  19. Gueorguieva I, Clark SR, McMahon CJ, Scarth S, Rothwell NJ, Tyrrell PJ et al (2008) Pharmacokinetic modelling of interleukin-1 receptor antagonist in plasma and cerebrospinal fluid of patients following subarachnoid haemorrhage. Br J Clin Pharmacol 65:317–325PubMedCrossRefGoogle Scholar
  20. Harker LA, Roskos LK, Marzec UM, Carter RA, Cherry JK, Sundell B et al (2000) Effects of megakaryocyte growth and development factor on platelet production, platelet life span, and platelet function in healthy human volunteers. Blood 95:2514–2522PubMedGoogle Scholar
  21. Hayashi N, Tsukamoto Y, Sallas WM, Lowe PJ (2007) A mechanism-based binding model for the population pharmacokinetics and pharmacodynamics of omalizumab. Br J Clin Pharmacol 63:548–561PubMedCrossRefGoogle Scholar
  22. Johnston E, Crawford J, Blackwell S, Bjurstrom T, Lockbaum P, Roskos L et al (2000) Randomized, dose-escalation study of SD/01 compared with daily filgrastim in patients receiving chemotherapy. J Clin Oncol 18:2522–2528PubMedGoogle Scholar
  23. Krzyzanski W, Ramakrishnan R, Jusko WJ (1999) Basic pharmacodynamic models for agents that alter production of natural cells. J Pharmacokinet Biopharm 27:467–489PubMedCrossRefGoogle Scholar
  24. Krzyzanski W, Jusko WJ, Wacholtz MC, Minton N, Cheung WK (2005) Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after multiple subcutaneous doses in healthy subjects. Eur J Pharm Sci 26:295–306PubMedCrossRefGoogle Scholar
  25. Kuwabara T, Kobayashi S, Sugiyama Y (1996) Pharmacokinetics and pharmacodynamics of a recombinant human granulocyte colony-stimulating factor. Drug Metab Rev 28:625–658PubMedCrossRefGoogle Scholar
  26. Lau Y, Wang B, Faggioni R, Lu H, Gross R, Wang Y et al (2010) Mechanistic pharmacokinetic-pharmacodynamic modeling of MEDI-551, a humanized IgG1 against CD19, for first-in-human starting dose recommendation. Clin Pharmacol Ther 87(Suppl 1):S58Google Scholar
  27. Leyland-Jones B, Colomer R, Trudeau ME, Wardley A, Latreille J, Cameron D et al (2010) Intensive loading dose of trastuzumab achieves higher-than-steady-state serum concentrations and is well tolerated. J Clin Oncol 28:960–966PubMedCrossRefGoogle Scholar
  28. Lote CJ (2000) Principles of renal physiology, 4th edn. Kluwer Academic Publishers), LondonCrossRefGoogle Scholar
  29. Lowe PJ, Tannenbaum S, Gautier A, Jimenez P (2009) Relationship between omalizumab pharmacokinetics, IgE pharmacodynamics and symptoms in patients with severe persistent allergic (IgE-mediated) asthma. Br J Clin Pharmacol 68:61–76PubMedCrossRefGoogle Scholar
  30. Lowe PJ, Tannenbaum S, Wu K, Lloyd P, Sims J (2010) On setting the first dose in man: quantitating biotherapeutic drug-target binding through pharmacokinetic and pharmacodynamic models. Basic Clin Pharmacol Toxicol 106:195–209PubMedCrossRefGoogle Scholar
  31. Mager DE, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28:507–532PubMedCrossRefGoogle Scholar
  32. Mager DE, Krzyzanski W (2005) Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res 22:1589–1596Google Scholar
  33. Mahmood I, Green MD (2007) Drug interaction studies of therapeutic proteins or monoclonal antibodies. J Clin Pharmacol 47:1540–1554PubMedCrossRefGoogle Scholar
  34. Marathe A, Krzyzanski W, Mager DE (2009) Numerical validation and properties of a rapid binding approximation of a target-mediated drug disposition pharmacokinetic model. J Pharmacokinet Pharmacodyn 36:199–219PubMedCrossRefGoogle Scholar
  35. Mizuno N, Kato Y, Iwamoto M, Urae A, Amamoto T, Niwa T et al (2001) Kinetic analysis of the disposition of insulin-like growth factor 1 in healthy volunteers. Pharm Res 18:1203–1209PubMedCrossRefGoogle Scholar
  36. Ober RJ, Radu CG, Ghetie V, Ward ES (2001) Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol 13:1551–1559PubMedCrossRefGoogle Scholar
  37. Oh CK, Faggioni R, Jin F, Roskos LK, Wang B, Birrel C et al (2010) An open-label, single-dose bioavailability study of the pharmacokinetics of CAT-354 after subcutaneous and intravenous administration in healthy males. Br J Clin Pharmacol 69:645–655PubMedCrossRefGoogle Scholar
  38. Pentsuk N, van der Laan JW (2009) An interspecies comparison of placental antibody transfer: new insights into developmental toxicity testing of monoclonal antibodies. Birth Defects Res B Dev Reprod Toxicol 86:328–344PubMedCrossRefGoogle Scholar
  39. Poulin P, Theil FP (2000) A priori prediction of tissue: plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. J Pharm Sci 89:16–35PubMedCrossRefGoogle Scholar
  40. Poulin P, Theil FP (2002) Prediction of pharmacokinetics prior to in vivo studies. II. Generic physiologically based pharmacokinetic models of drug disposition. J Pharm Sci 91:1358–1370PubMedCrossRefGoogle Scholar
  41. Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7:715–725PubMedCrossRefGoogle Scholar
  42. Roskos LK, Stead R, Harker L, Cheung EN (1997) A cytokinetic model of platelet production and destruction following administration of peg-rhuMGDF. Blood 90:171Google Scholar
  43. Roskos LK, Lum P, Lockbaum P, Schwab G, Yang BB (2006) Pharmacokinetic/pharmacodynamic modeling of pegfilgrastim in healthy subjects. J Clin Pharmacol 46:747–757PubMedCrossRefGoogle Scholar
  44. Roskos LK, Klakamp S, Liang M, Arends R, Green L (2007) Molecular engineering II: antibody affinity. In: Dubel S (ed) Handbook of therapeutic antibodies, 1st edn. Wiley-VCH, Weinheim, pp 145–170CrossRefGoogle Scholar
  45. Royer B, Yin W, Pegram M, Ibrahim N, Villanueva C, Mir D et al (2010) Population pharmacokinetics of the humanised monoclonal antibody, HuHMFG1 (AS1402), derived from a phase I study on breast cancer. Br J Cancer 102:827–832PubMedCrossRefGoogle Scholar
  46. Savic RM, Jonker DM, Kerbusch T, Karlsson MO (2007) Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn 34:711–726PubMedCrossRefGoogle Scholar
  47. Segel IH (1993) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady state enzyme systems. Wiley, New YorkGoogle Scholar
  48. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD et al (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355:1018–1028PubMedCrossRefGoogle Scholar
  49. Supersaxo A, Hein W, Gallati H, Steffen H (1988) Recombinant human interferon alpha-2a: delivery to lymphoid tissue by selected modes of application. Pharm Res 5:472–476PubMedCrossRefGoogle Scholar
  50. Supersaxo A, Hein WR, Steffen H (1990) Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res 7:167–169PubMedCrossRefGoogle Scholar
  51. Tabrizi MA, Roskos LK (2007) Preclinical and clinical safety of monoclonal antibodies. Drug Discov Today 12:540–547PubMedCrossRefGoogle Scholar
  52. Toon S (1996) The relevance of pharmacokinetics in the development of biotechnology products. Eur J Drug Metab Pharmacokinet 21(2):93–103Google Scholar
  53. Uehlinger DE, Gotch FA, Sheiner LB (1992) A pharmacodynamic model of erythropoietin therapy for uremic anemia. Clin Pharmacol Ther 51:76–89PubMedCrossRefGoogle Scholar
  54. Urva SR, Yang VC, Balthasar JP (2010) Physiologically based pharmacokinetic model for T84.66: a monoclonal anti-CEA antibody. J Pharm Sci 99:1582–1600PubMedCrossRefGoogle Scholar
  55. Wang B, Ludden TM, Cheung EN, Schwab GG, Roskos LK (2001) Population pharmacokinetic-pharmacodynamic modeling of filgrastim (r-metHuG-CSF) in healthy volunteers. J Pharmacokinet Pharmacodyn 28:321–342PubMedCrossRefGoogle Scholar
  56. Wang W, Wang EQ, Balthasar JP (2008) Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 84:548–558PubMedCrossRefGoogle Scholar
  57. Wang DD, Zhang S, Zhao H, Men AY, Parivar K (2009) Fixed dosing versus body size-based dosing of monoclonal antibodies in adult clinical trials. J Clin Pharmacol 49:1012–1024PubMedCrossRefGoogle Scholar
  58. Weinstein JN, van Osdol W (1992) The macroscopic and microscopic pharmacology of monoclonal antibodies. Int J Immunopharmacol 14:457–463PubMedCrossRefGoogle Scholar
  59. Wiczling P, Rosenzweig M, Vaickus L, Jusko WJ (2010) Pharmacokinetics and pharmacodynamics of a chimeric/humanized anti-CD3 monoclonal antibody, otelixizumab (TRX4), in subjects with psoriasis and with type 1 diabetes mellitus. J Clin Pharmacol 50:494–506PubMedCrossRefGoogle Scholar
  60. Woo S, Jusko WJ (2007) Interspecies comparisons of pharmacokinetics and pharmacodynamics of recombinant human erythropoietin. Drug Metab Dispos 35:1672–1678PubMedCrossRefGoogle Scholar
  61. Yan X, Mager DE, Krzyzanski W (2010) Selection between Michaelis–Menten and target-mediated drug disposition pharmacokinetic models. J Pharmacokinet Pharmacodyn 37:25–47PubMedCrossRefGoogle Scholar
  62. Yang BB, Lum PK, Hayashi MM, Roskos LK (2004) Polyethylene glycol modification of filgrastim results in decreased renal clearance of the protein in rats. J Pharm Sci 93:1367–1373PubMedCrossRefGoogle Scholar
  63. Zhao L, Roskos L, Griffin P, Losonsky GA, Groothius JR, Jallal B, Robbie GJ (2010) Population pharmacokinetics analysis of motavizumab in children at risk for RSV infection. Pediatric Academic Societies (PAS) annual meeting, Vancouver, CanadaGoogle Scholar
  64. Zhou H, Davis HM (2009) Risk-based strategy for the assessment of pharmacokinetic drug-drug interactions for therapeutic monoclonal antibodies. Drug Discov Today 14:891–898PubMedCrossRefGoogle Scholar
  65. Zhu Y, Hu C, Lu M, Liao S, Marini JC, Yohrling J et al (2009) Population pharmacokinetic modeling of ustekinumab, a human monoclonal antibody targeting IL-12/23p40, in patients with moderate to severe plaque psoriasis. J Clin Pharmacol 49:162–175PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Pharmacokinetics, Pharmacodynamics & Bioanalysis, Translational SciencesMedImmune, Inc.GaithersburgUSA

Personalised recommendations