Skip to main content

Integrating Theory and Predictive Modeling for Conservation Research

  • Chapter
  • First Online:
Book cover Predictive Species and Habitat Modeling in Landscape Ecology

Abstract

The need for effective techniques to predict how global changes will alter biological diversity has never been greater and continues to increase (Buckley and Roughgarden 2004; Thomas et al. 2004). Although accelerating climate and land use changes loom especially large, extinction rates have risen as a result of other types of threats as well – such as overkill and pollution. Individually, each of these perils is serious, but it is through their additive and sometimes synergistic interactions that the world is now in the midst of a sixth mass extinction (Wake and Vredenburg 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Algar AC, Kharouba HM, Young EM, Kerr JT (2009) Predicting the fu ture of biodiversity: direct tests of alternate forecasting methods. Ecography 32:22–33.

    Article  Google Scholar 

  • Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Modell 162:211–232.

    Article  Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47.

    Article  PubMed  Google Scholar 

  • Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118.

    Article  Google Scholar 

  • Bahn V, McGill BJ (2007) Can niche-based distribution models outperform spatial interpolation? Glob Ecol Biogeogr 16:733–742.

    Article  Google Scholar 

  • Balls MJ, Bodker R, Thomas CJ, Kisinza W, Msangeni HA, Lindsay SW (2004) Effect of topography on the risk of malaria infection in the Usambara Mountains, Tanzania. Trans R Soc Trop Med Hyg 98:400–408.

    Article  CAS  PubMed  Google Scholar 

  • Bell G (2001) Neutral macroecology. Science 293:2413–2418.

    Article  CAS  PubMed  Google Scholar 

  • Bodker R, Akida J, Shayo D, Kisinza W, Msangeni HA, Pedersen EM, Lindsay SW (2003) Relationship between altitude and intensity of malaria transmission in the Usambara Mountains. Tanzania J Med Entomol 40:706–717.

    Article  CAS  Google Scholar 

  • Bogh C, Lindsay SW, Clarke SE, Dean A, Jawara M, Pinder M, Thomas CJ (2007) High spatial resolution mapping of malaria transmission risk in The Gambia, West Africa, using Landsat TM satellite imagery. Am J Trop Med Hyg 76(5):875–881.

    PubMed  Google Scholar 

  • Box GEP (1979) Some problems of statistics and everyday life. J AM Stat Assoc 74:1–4.

    Google Scholar 

  • Brown JH, Kodric-Brown A (1977) Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449.

    Article  Google Scholar 

  • Buckley LB, Roughgarden J (2004) Biodiversity conservation: effects of changes in climate and land use. Nature 430:2.

    Article  PubMed  Google Scholar 

  • Buckley LB (2008) Linking traits to energetics and population dynamics to predict lizard ranges in changing environments. Am Nat 171:E1–E19.

    Article  PubMed  Google Scholar 

  • Craig MH, Snow RW, le Sueur D (1999) A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today 15:105–111.

    Article  CAS  PubMed  Google Scholar 

  • Crozier L, Dwyer G (2006) Combining population dynamic and ecophysiological models to predict climate-induced insect range shifts. Am Nat 167:853–866.

    Article  Google Scholar 

  • Dennis RLH (1993) Butterflies and climate change. Manchester University Press, Manchester.

    Google Scholar 

  • Depinay J-M, Mbogo CM, Killeen G, Knolls B, Beier J, Carlson J, Dushoff J, Billingsley P, Mwambi H, Githure J, Toure AM, McKenzie FE (2004). A simulation model of the African Anopheles ecology and population dynamics for the analysis of malaria transmission. Malar J 3: 29.

    Article  PubMed  Google Scholar 

  • Dillon PJ, Rigler FH (1974) The phosphorus-chlorophyll relationship in lakes. Limnol Oceanogr 19:767–773.

    Article  CAS  Google Scholar 

  • Diniz-Filho JAF, Bini LM, Hawkin BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12:53–64.

    Article  Google Scholar 

  • Drakeley C, Carneiro I, Reyburn H, Malima R, Lusingu JP, Cox J, Theander TG, Nkya WM, Lemnge M, Riley EM (2005) Altitude-dependent and -independent variations in Plasmodium falciparum prevalence in northeastern Tanzania. J Infect Dis 191:1589–1598.

    Article  PubMed  Google Scholar 

  • Gilbert B, Laurance W, Leigh Jr. E, Nascimento H (2006) Can neutral theory predict the responses of Amazonian tree communities to forest fragmentation? Am Nat 168:304–317.

    Article  PubMed  Google Scholar 

  • Gottfried K, Wilson KG (1997) Science as a cultural construct. Nature 386:545–547.

    Article  CAS  Google Scholar 

  • Guisan A, Zimmermann NE, Elith J, Graham CH, Phillips S, Peterson AT (2008) What matters for predicting the occurrences of trees: techniques, data, or species’ characteristics? Ecol Monogr 77:615–630.

    Article  Google Scholar 

  • Hay SI, Rogers DJ, Toomer JF, Snow RW (2000) Annual Plasmodium falciparum entomological inoculation rates (EIR) across Africa: literature survey, internet access and review. Trans R Soc Trop Med Hyg 94:113–126.

    Article  CAS  PubMed  Google Scholar 

  • Helmuth B, Kingsolver JG, Carrington E (2005) Biophysics, physiological ecology and climate change: does mechanism matter? Ann Rev Physiol 67:177–201.

    Article  CAS  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton.

    Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427.

    Google Scholar 

  • Kearney M, Porter WP (2004) Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology 85:3119–3131.

    Article  Google Scholar 

  • Kerr JT, Kharouba HM, Currie DJ (2007) The macroecological contribution to global change solutions. Science 316:1581–1584.

    Article  CAS  PubMed  Google Scholar 

  • Kharouba HM, Algar AC, Kerr JT (2009) Historically calibrated predictions of butterfly species’ range shift using global change as a pseudo-experiment. Ecology 90:2213–2222.

    Article  PubMed  Google Scholar 

  • Killeen GF, McKenzie FE, Foy BD, Schieffelin C, Billingsley PF, Beier JC (2000) A simplified model for predicting malaria entomological inoculation rates based on entomologic and parasitologic parameters relevant to control. Am J Trop Med Hyg 62(5):535–544.

    CAS  PubMed  Google Scholar 

  • Koenig WD (1999) Spatial autocorrelation of ecological phenomena. Trends Ecol Evol 14:22–26.

    Article  PubMed  Google Scholar 

  • Kukal O, Ayres MP, Scriber JM (1991) Cold tolerance of the pupae in relation to the distribution of swallowtail butterflies. Can J Zool 69:3028–3037.

    Article  Google Scholar 

  • Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna HM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Laurance SG, Sampiao E (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv Biol 16:605–618.

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier Science, Amsterdam.

    Google Scholar 

  • Lindsay SW, Bodker R, Malima R, Msangeni HA, Kisinza W (2000) Effect of 1997–98 El Nino on highland malaria in Tanzania. Lancet 355:989–990.

    Article  CAS  PubMed  Google Scholar 

  • Lovejoy TE, Bierregaard Jr. RO, Rankin JM, and Schubart HOR (1983) Ecological dynamics of forest fragments. In: Sutton SL, Whitmore TC, and Chadwick AC, (eds) Tropical rain forest: ecology and management. Blackwell Scientific, Oxford, United Kingdom 377–384.

    Google Scholar 

  • Luoto M, Pöyry J, Heikkinen RK, Saarinen K (2005) Uncertainty of bioclimate envelopemodels based on geographical distribution of species. Glob Ecol Biogeogr 14:575–584.

    Article  Google Scholar 

  • McLean A, May RM (2007) Introduction. In: May RM, McLean A (eds) Theoretical ecology: principles and applications. Oxford University Press, Oxford.

    Google Scholar 

  • Menendez R, Gonzalez Megias A, Hill JK, Braschler B, Willis SG, Collingham Y, Fox R, Roy DB, Thomas CD (2006) Species richness changes lag behind climate change. Proc R Soc B 273:1465–1470.

    Article  PubMed  Google Scholar 

  • Parmesan C. 1996. Climate and species’ range. Nature 382:765–766.

    Article  CAS  Google Scholar 

  • Parmesan C (2005) Biotic response: range and abundance changes. In: Lovejoy TE, Hannah L (eds) Climate change and biodiversity. Yale University Press, New Haven.

    Google Scholar 

  • Parmesan C, Ryrholm N, Stefanescus C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999) Poleward shifts in geographical ranges of butterfly species associated with climate change. Nature 399:579–583.

    Article  CAS  Google Scholar 

  • Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711.

    Article  Google Scholar 

  • Peterson AT, Martinez-Meyer E, Gonzalez-Salazar C, Hall PW (2004) Modeled climate change effects on distributions of Canadian butterfly species. Can J Zool 82:851–858.

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259.

    Article  Google Scholar 

  • Raxworthy CJ, Martinez-Meyer E, Horning N, Nussbaum RA, Schneider GE, Ortega-Huerta A, Peterson AT (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature 426:837–841.

    Article  CAS  PubMed  Google Scholar 

  • Rogers DJ, Randolph SE, Snow RW, Hay SI (2002) Satellite imagery in the study and forecast of malaria. Nature 415:710–715.

    Article  CAS  PubMed  Google Scholar 

  • Root TL (1988) Environmental factors associated with avian distributional boundaries. J Biogeogr 15:489–505.

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60.

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357.

    Article  CAS  PubMed  Google Scholar 

  • Scott JM, Heglund PJ, Morrison ML, Haufler JB, Raphael MG, Wall WA, Samson FB (2002) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, DC.

    Google Scholar 

  • Smith DL, Dushoff J, McKenzie FE (2004) The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol 2:e368.

    Article  PubMed  Google Scholar 

  • Snow RW, Craig MH, Deichmann U, le Sueur D (1999) A preliminary continental risk map for malaria mortality among African children. Parasitol Today 15:99–104.

    Article  CAS  PubMed  Google Scholar 

  • Takken W, Charlwood JD, Billingsley PF, Gort G (1998) Dispersal and survival of Anopheles funestus and A. gambiaes.L. (Diptera: Culicidae) during the rainy season in southeast Tanzania. Bull Entomological Res 88:561–566.

    Article  Google Scholar 

  • Teklehaimanot H, Lipsitch M, Teklehaimanot A, Schwartz J (2004) Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia I. Patterns of lagged weather effects reflect biological mechanisms. Malar J 3:41.

    Article  PubMed  Google Scholar 

  • Thomas CD (2000) Dispersal and extinction in fragmented landscapes. Proc R Soc B 267:139–145.

    Article  CAS  PubMed  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham LC, Erasmus BFN, Ferreira de Siqueira M, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148.

    Article  CAS  PubMed  Google Scholar 

  • Thuiller W (2003) BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change. Glob Change Biol 9:1353–1362.

    Article  Google Scholar 

  • Tilman D (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc Natl Acad Sci USA 101:10854–10861.

    Article  CAS  PubMed  Google Scholar 

  • Wake DB, Vredenburg VT (2008) Are we in the midst of a sixth mass extinction? A view from the world of amphibians. Proc Natl Acad Sci USA 105:11466–11473.

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Kerr JT (2006) Contrasting spatial and temporal global change impacts on butterfly species richness during the 20th century. Ecography 29:908–918.

    Article  Google Scholar 

  • Willis KJ, Araujo MB, Bennett KD, Figueroa-Rangel B, Froyd CA, Myers N (2007) How can a knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philos Trans R Soc B 362:175–186.

    Article  Google Scholar 

  • WHO (2008) World malaria report 2008. World Health Organization/UNICEF, Geneva/New York.

    Google Scholar 

  • Wilson RJ, Gutierrez D, Gutierrez J, Martinez D, Agudo R, Monserrat VJ (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8:1138–1146.

    Article  Google Scholar 

  • Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge.

    Google Scholar 

  • Zhou SR, Zhang DY (2008) A nearly neutral model of biodiversity. Ecology 89:248–258.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

All authors would like to acknowledge research support from the Natural Sciences and Engineering Research Council, as well as infrastructure and research support from the Canadian Foundation for Innovation and the Ontario Ministry of Research and Innovation. We are grateful to three anonymous reviewers for their assistance in improving this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy T. Kerr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+BUsiness Media, LLC

About this chapter

Cite this chapter

Kerr, J.T., Kulkarni, M., Algar, A. (2011). Integrating Theory and Predictive Modeling for Conservation Research. In: Drew, C., Wiersma, Y., Huettmann, F. (eds) Predictive Species and Habitat Modeling in Landscape Ecology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7390-0_2

Download citation

Publish with us

Policies and ethics