Skip to main content

Future Direction: E-Textiles

  • Chapter
  • First Online:
Wearable Monitoring Systems

Abstract

Body worn systems, endowed with autonomous sensing, processing, actuation, communication and energy harvesting and storage are emerging as a solution to the challenges of monitoring people anywhere and at anytime in applications such as healthcare, well-being and lifestyle, protection and safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arora S, Ghosh T, Muth J (2007) Dielectric elastomer based prototype fiber actuators. Sens Actuators A 136:321–328

    Article  Google Scholar 

  • Balachandran R, Pacheco D, Lawandy N (1996) Photonic textile fibers. Appl Opt 35:91–94

    Google Scholar 

  • Bhattacharya R, de Kok M, Zhou J (2009) Rechargeable electronic textile battery. Appl Phys Lett 95:223305

    Article  Google Scholar 

  • Bonfiglio A, De Rossi D, Kirstein T et al (2005) Organic field effect transistors for textile applications. IEEE Trans Inf Technol Biomed 9(3):319–324

    Article  Google Scholar 

  • Cameron C, Szabo J, Johnstone S et al (2008) Linear actuation in coextruded dielectric elastomer tubes. Sens Actuators A 147:286–291

    Article  Google Scholar 

  • Carpi F, De Rossi D (2005) Electroactive polymer-based devices for e-textiles in biomedicine. IEEE Trans Inf Technol Biomed 9(3):295–318

    Article  Google Scholar 

  • Carpi F, Mannini A, De Rossi D (2009) Dynamic splint-like hand orthosis for finger rehabilitation. In Carpi F, Smela E (eds) Biomedical applications of electroactive polymer actuators. John Wiley & Sons Ltd, New York, pp 443–461

    Chapter  Google Scholar 

  • Chan Vili Y (2007) Investigating smart textiles based on shape memory materials. Text Res J 77(5):290–300

    Article  Google Scholar 

  • Collins G, Buckley L (1996) Conductive polymer-coated fabrics for chemical sensing. Synth Metals 78:93–101

    Article  Google Scholar 

  • Coyle S, Wu Y, Lau K, De Rossi D et al (2007) Smart nanotextiles: a review of materials and applications. MRS Bulletin 32:1–9

    Google Scholar 

  • Coyle S et al (2010) BIOTEX – Biosensing textiles for personalised healthcare management. IEEE Trans Inf Technol Biomed 14(2):364–370

    Article  Google Scholar 

  • Ctrysse M, Puers R, Hertleer C et al (2004) Towards the integration of textile sensors in a wireless monitoring suit. Sens Actuators A 114(2–3):302–311

    Google Scholar 

  • De Rossi D (2007) A logical step. Nat Mater 6:328–329

    Article  Google Scholar 

  • De Rossi D, Della Santa A, Mazzoldi A (1999) Dressware: wearable hardware. Mat Sci Eng C 7(1):31–35

    Article  Google Scholar 

  • De Rossi D, Della Santa A, Mazzoldi A (1997) Dressware: wearable piezo-and thermoresistive fabrics for ergonomics and rehabilitation. In: Proceedings of 19th international conference of the IEEE-EMBS, Chicago, IL, 30 October to 2 November, vol. 5, pp 1880–1883

    Google Scholar 

  • De Rossi D, Lorussi F, Mazzoldi A et al (2003) Active dressware: wearable kinesthetic system. In: Barth FG, Humphrey JAC, Secombe TW (eds), Sensors and sensing in biology and engineering. Springer Wien, New York, pp 379–392

    Google Scholar 

  • Dhawan A, Muth JK, Ghosh T (2006) Optical nano-textile sensors based on the incorporation of semiconducting and metallic nanoparticles into optical fibers. Materials Research Society, Spring Symposium

    Google Scholar 

  • Edmison J, Jones M, Nakad Z et al (2002) Using piezoelectric materials for wearable electronic textiles. In: Proceedings of the 6th IEEE international symposium on wearable computers, Washington, DC, pp 41–48

    Google Scholar 

  • El-Sherif M (2000) Fiber optic sensors and smart fabrics. J Intell Mater Syst Struct 11(5):407–414

    Google Scholar 

  • Fan X, Chu Z, Chen L et al (2008) Fibrous flexible solid-type dye-sensitized solar cells without transparent conducting oxide. Appl Phys Lett 92:113510

    Article  Google Scholar 

  • Farringdon J, Moore A, Tilbury N et al (1999) Wearable sensor badge and sensor jacket for context awareness. In: Proceedings of the 3rd symposium on wearable computers, San Francisco, CA, 18–19 October, pp 107–113

    Google Scholar 

  • Gauvreau B, Guo N, Schiker K et al (2008) Color changing and colour-tunable photonic bandgap fiber textiles. Opt Express 16(20):15672–15693

    Article  Google Scholar 

  • Gibbs PT, Asada HH (2005) Wearable conductive fiber sensors for multi-axis human joint angle measurement. J Neuroeng Rehabil 2(7):1–7

    Google Scholar 

  • Giorgino T, Tormene P, Lorussi F et al (2009) Sensor evaluation for wearable strain gauges in neurological rehabilitation. IEEE Trans Neural Syst Rehabil Eng 17(4):409–415

    Article  Google Scholar 

  • Gopalsamy C, Park S, Rajamanickam R et al (1999) The wearable motherboard: the first generation of adaptive and responsive textile structures (ARTS) for medical applications. Virtual Real 4:152–168

    Article  Google Scholar 

  • Gourmelon L, Langereis G (2006) Contactless sensors for surface electromyography. In: Proceedings of the 28th annual conference of the IEEE-EMBC, New York, NY, 30 August to 3 September, pp 2514–2517

    Google Scholar 

  • Gregory R, Kimbrell W, Kuhn H (1989) Conductive textiles. Synth Met 28(1–2):823–835

    Article  Google Scholar 

  • Grossman P (2003) The lifeshirt: a multi-function ambulatory system that monitors health, disease, and medical intervention in the real world. In: Proceedings of the international workshop on new generation wearable system for e-health: toward revolution of citizens’ health, life style management, Lucca, 11–14 December, pp 73–80

    Google Scholar 

  • Hamedi M, Fochheimer R, Inganäs O (2007) Toward woven logic from organic electronic fibers. Nat Mater 6:357–362

    Article  Google Scholar 

  • Hamedi M, Herlogsson L, Crispin X et al (2009) Fiber-embedded electrolyte-gate field effect transistors for e-textiles. Adv Mater 21:573–577

    Article  Google Scholar 

  • Harlin A, Makinen M, Vuorivista A (2003) Development of polymeric optical fibre fabrics as illumination elements and textile displays. Autex Res J 3:1–8

    Google Scholar 

  • Haynes A, Gouma P (2008) Electrospum conducting polymer-based sensors for advanced pathogen detection. IEEE Sens J 8(6):701–705

    Article  Google Scholar 

  • Hertleer C, Rogier H, Vallozzi L et al (2009) A textile antenna for off-body communication integrated into protective clothing for firefighters. IEEE Trans Antennas Propag 57(4):919–925

    Article  Google Scholar 

  • Hu J (2007) Shape memory polymers in textiles. Woodhead Textiles Series, No. 65, 360 pp

    Google Scholar 

  • Ishijima M (1997) Cardiopulmonary monitoring by textile electrodes without subject awareness of being monitored. Med Biol Eng Comp 35(6):685–690

    Article  Google Scholar 

  • Kang T, Merritt C, Grant E et al (2008) Nonwoven fabric active electrodes for biopotential measurement during normal daily activity. IEEE Trans Biomed Eng 55(1):188–193

    Article  Google Scholar 

  • Klemm M, Troester G (2006) Textile UWB antennas for wireless body area networks. IEEE Trans Ant Propag 54(11):3192–3197, http://www.konarka.com

    Google Scholar 

  • Koncar V (2005) Optical fiber fabric displays. Opt Photon News 16:40–44

    Article  Google Scholar 

  • Lanatà A, Sclingo E, De Rossi D (2010) A multi-modal transducer for cardiopulmonary activity monitoring in emergency. IEEE Trans Inf Technol Biomed

    Google Scholar 

  • Lee J, Subramanian V (2005) Weave patterned organic transistors on fiber for e-textiles. IEEE Trans Electron Dev 52:269–275

    Article  Google Scholar 

  • Lorussi F, Galatolo S, De Rossi D (2009) Textile-based electrogoniometers for wearable posture and gesture capture systems. IEEE Sens J 9(9):1014–1024

    Article  Google Scholar 

  • Lorussi F, Rocchia W, Scilingo EP et al (2004) Wearable, redundant fabric-based sensor arrays for reconstruction of body segment posture. IEEE Sens J 4(6):807–818

    Article  Google Scholar 

  • Luid E, Jayaraman S, Park S et al (1997) A sensate liner for personnel monitoring applications. In: Proceedings of the first international symposium on wearable computers, Cambridge, MA, 13–14 October, pp 98–105

    Google Scholar 

  • Maccioni M, Orgio E, Cosseddu P et al (2006) Towards the textile transistor: assembly and characterization of an organic field effect transistor with a cylindrical geometry. Appl Phys Lett 89:1–3

    Article  Google Scholar 

  • Marculescu D et al (2003) Electronic textiles: a platform for pervasive computing. Proc IEEE 91:1995–2018

    Article  Google Scholar 

  • Mattana G, Strickland A, Bonfiglio A et al (2010) Flexible, electrically conductive cotton yarns. Submitted to ACS Nano

    Google Scholar 

  • Mattmann C, Clemens F, Troester G (2008) Sensor for measuring strain in textile. Sensors 8:3719–3732

    Article  Google Scholar 

  • Morris D, Coyle S, Wu Y et al (2009) Bio-sensing textile based patch with integrated optical detection system for sweat monitoring. Sens Actuators B139:231–236

    Google Scholar 

  • Norris I, Mattes B (2007) Conducting polymer fiber production and application. In: Skotein T, Reynolds J (eds) Handbook of conducting polymers. CRC Press, Boca Raton, FL

    Google Scholar 

  • O’Connor B, An K, Zhao Y et al (2007) Fiber shaped organic light emitting device. Adv Mater 19:3897–3900

    Article  Google Scholar 

  • O’Connor B, Pipe K, Shtein M (2008) Fiber based organic photovoltaic devices. Appl Phys Lett 92:193306

    Article  Google Scholar 

  • Orth M, Post R, Cooper E (1998) Fabric computing interfaces. CHI 98 Conference on Human Factors in Computing Systems, AMC Press, Los Angeles, pp 331–332

    Chapter  Google Scholar 

  • Pacelli M, Caldani L, Paradiso R (2006) Textile Piezoresistive Sensors for Biomechanical Monitoring, Proceeding of the 28th IEEE EMBS, New York, 30 August–3 September 2006 pp 5358–5361

    Google Scholar 

  • Paradiso R, Loriga G, Taccini N (2005) A wearable health care system based on knitted integrated sensors. IEEE Trans Inf Technol Biomed 9(3):337–344

    Article  Google Scholar 

  • Paradiso R, De Rossi D (2006) Advances in Textile Technologies for Unobtrusive Monitoring of Vital Parameters and Movements, Proceeding of the 28th IEEE EMBS, New York, 30 August– 3 September 2006, pp 392–395

    Google Scholar 

  • Post E, Orth M (1997) Smart fabrics or “wearable clothing.” In: Proceedings of the first international symposium on wearable computers, Pittsburgh, PA, pp 167–168

    Google Scholar 

  • Post E, Orth M, Russo P et al (2000) E-broidery: design and fabrication of textile-based computing. IBM Syst J 19(384):840–860

    Article  Google Scholar 

  • Ramier J, Plummer C, Leterrier Y et al (2008) Mechanical integrity of dye-sensitized photovoltaic fibers. Renew Energ 33(2):314–319

    Article  Google Scholar 

  • Salonen P, Ramat-Samii Y, Kivitoski M (2004) Dual-band wearable textile antenna. In: Proceedings of the IEEE antennas and propagation society international symposium, vol 1, pp 463–466

    Google Scholar 

  • Salvo P, Di Francesco F, Costanzo D et al (2010). A wearable sensor for measuring sweat rate. Sens J 10(10), October 2010, pp 1557–1558

    Google Scholar 

  • Scilingo EP, Gemignani A, Paradiso R et al (2005) Performance evaluation of sensing fabrics for monitoring physiological and biomechanical variables. IEEE Trans Inf Technol Biomed 9(3):345–352

    Article  Google Scholar 

  • Sergio M, Manaresi N, Tartagni M et al (2002) A textile based capacitive pressure sensor. Proc IEEE Sens 2:1625–1630

    Article  Google Scholar 

  • Service R (2003) Electronic textiles charge ahead. Science 301:909–911

    Article  Google Scholar 

  • Shim, BS, Chen W, Doty C et al (2008) NanoLetters 8(12):4151–4157.

    Google Scholar 

  • Tognetti A, Lorussi F, Bartalesi R et al (2005) Wearable kinesthetic system for capturing and classifying upper limb gesture in post-stroke rehabilitation. J Neuroeng Rehabil 2(8):1–16

    Google Scholar 

  • Tronquo A, Rogier H, Hertleer C et al (2006) Robust planar textile antenna for wireless body LANs operating in 2.45 GHz ISM band. Electron Lett 42(3):142–143

    Article  Google Scholar 

  • VDC (2007) Smart fabrics and interactive textiles and related enabling technologies market opportunities and requirements analysis published. Venture Development Corporation (VDC)

    Google Scholar 

  • Wang J, Too C, Wallace G (2005) A highly flexible polymer fiber battery. J Power Sources 150:223–228

    Article  Google Scholar 

  • Wang Z, Wang X, Song J et al (2008) Piezoelectric nanogenerators for self-powered nanodevices. IEEE Pervasive Comput 7(1):49–55

    Article  Google Scholar 

  • Weber AL, Blanc D, Dittmar A et al (2004) Telemonitoring of vital parameters with newly designed biomedical clothing VTAM. Stud Health Technol Inform 108:260–265

    Google Scholar 

  • Wijesiriwardana R, Dias T, Mukhopadhyay S (2003) Resistive fiber-meshed transducers. In: Proceedings of the 7th IEEE international symposium on wearable computers, New York, 21–23 October, pp 200–209

    Google Scholar 

  • Winchester R, Stylios G (2003) Designing knitted apparel by engineering, the attributes of shape memory alloys. Int J Cloth Sci Technol 15(5):359–366

    Article  Google Scholar 

  • Xu P, Zhang H, Tao X (2008) Textile-structured electrodes for electrocardiogram. Text Prog 40(4):183–213

    Article  Google Scholar 

  • Yadav A, Pipe K, Shtein M (2008) Fiber-based flexible thermoelectric power generator. J Power Sources 175(2):909–913

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Emilio de Rossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

de Rossi, D.E., Paradiso, R. (2011). Future Direction: E-Textiles. In: Bonfiglio, A., De Rossi, D. (eds) Wearable Monitoring Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7384-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7384-9_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7383-2

  • Online ISBN: 978-1-4419-7384-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics