Multispectral Image Pansharpening Based on the Contourlet Transform

  • Israa Amro
  • Javier Mateos


Pansharpening is a technique that fuses the information of a low-resolution multispectral image and a high-resolution panchromatic image, usually remote sensing images, to provide a high-resolution multispectral image. In the literature, this task has been addressed from different points of view being one of the most popular wavelet-based algorithms. Recently, a new transform, the contourlet transform, has been proposed. This transform combines the advantages of the wavelets transform, with a more efficient directional information representation. The result is a flexible multiscale, multidirection and shift-invariant decomposition that can be efficiently implemented via the a’trous algorithm. In this chapter, we compare the wavelet-based pansharpening with existing contourlet-based approaches and propose a new pansharpening method based on the contourlet transform. The performance of the contourlet in general, and the proposed method in particular, is assessed numerically and visually for Landsat and SPOT images.


Multispectral Image Panchromatic Image Directional Filter Bank Universal Image Quality Index Pansharpened Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the Consejería de Innovación, Ciencia y Empresa of the Junta de Andalucía under contract P07-TIC-02698.


  1. 1.
    Z. Wang, D. Ziou, C. Armenakis, D. Li, and Q. Li. A comparative analysis of image fusion methods. IEEE Trans. Geosci.Remote Sens., 43(6):1391–1402, 2005.ADSCrossRefGoogle Scholar
  2. 2.
    L. Wald. Some terms of reference in data fusion. IEEE Trans. Geosci. Remote Sens., 37(3):1190–1193, 1999.ADSCrossRefGoogle Scholar
  3. 3.
    C. Pohl and J. L. Van Genderen. Multi-sensor image fusion in remote sensing: Concepts, methods, and applications. Int. J. Remote Sens., 19(5):823–854, 1998.ADSCrossRefGoogle Scholar
  4. 4.
    Google Earth, Google Earth Web Site.
  5. 5.
    L. Alparone, L. Wald, J. Chanussot, P. Gamba, and L. M. Bruce. Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest. IEEE Trans. Geosci. Remote Sens., 45(10):3012–3021, 2007.ADSCrossRefGoogle Scholar
  6. 6.
    P. S. Chavez, Jr and J. A. Bowell. Comparison of the spectral information content of Landsat Thematic Mapper and SPOT for three different sites in the Phoenix, Arizona region. Photogramm. Eng. Remote Sens., 54(12):1699–1708, 1988.Google Scholar
  7. 7.
    J. Zhou, D. L. Civco, and J. A. Silander. A wavelet transform method to merge Landsat TM and SPOT panchromatic data. Int. J. Remote Sens., 19(4):743–757, 1998.ADSCrossRefGoogle Scholar
  8. 8.
    P. S. Chavez and A. Y. Kwarteng. Extracting spectral contrast in Landsat thematic mapper image data using selective principal component analysis. Photogramm. Eng. Remote Sens., 55(3):339–348, 1989.Google Scholar
  9. 9.
    V. P. Shah, N. H. Younan, and R. King. Pan-sharpening via the contourlet transform. In Proc. IEEE Int. Geosci. Remote Sens. Symp. IGARSS 2007, pages 310–313, 2007.Google Scholar
  10. 10.
    M. N. Do and M. Vetterli. The contourlet transform: An efficient directional multiresolution image representation. IEEE Trans. Image Process., 14(12):2091–2106, 2005.MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    X. Otazu, M. González-Audícana, O. Fors, and J. Núñez. Introduction of sensor spectral response into image fusion methods: Application to wavelet-based methods. IEEE Trans. Geosci. Remote Sens., 43(10):2376–2385, 2005.ADSCrossRefGoogle Scholar
  12. 12.
    V. P. Shah, N. H. Younan, and R. L. King. An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets. IEEE Trans. Geosci. Remote Sens., 46(5):1323–1335, 2008.ADSCrossRefGoogle Scholar
  13. 13.
    A. L. da Cunha, Jianping Zhou, and M. N. Do. The nonsubsampled contourlet transform: Theory, design, and applications. IEEE Trans. Image Process., 15(10):3089–3101, 2006.Google Scholar
  14. 14.
    M. González-Audícana and X. Otazu. Comparison between Mallat’s and the a’trous discrete wavelet transform based algorithms for the fusion of multispectral and panchromatic images. Int. J. Remote Sens., 26(3):595–614, 2005.CrossRefGoogle Scholar
  15. 15.
    M. Lillo-Saavedra and C. Gonzalo. Multispectral images fusion by a joint multidirectional and multiresolution representation. Int. J. Remote Sens., 28(18):4065–4079, 2007.ADSCrossRefGoogle Scholar
  16. 16.
    W. Dou and Y. Chen. An improved IHS image fusion method with high spectral fidelity. Int. Archiv. Photogramm., Rem. Sensing Spat. Inform. Sci., XXXVII:1253–1256, 2008, part.B7.Google Scholar
  17. 17.
    J. Nuñez, X. Otazu, O. Fors, A. Prades, V. Pala, and R. Arbiol. Multiresolution-based image fusion with additive wavelet decomposition. IEEE Trans. Geosci. Remote Sens., 37(3): 1204–1211, 1999.ADSCrossRefGoogle Scholar
  18. 18.
    M. Song, X. Chen, and P. Guo. A fusion method for multispectral and panchromatic images based on HSI and contourlet transformation. In Proc. 10th Workshop on Image Analysis for Multimedia Interactive Services WIAMIS ’09, pages 77–80, 6–8 May 2009.Google Scholar
  19. 19.
    A. M. ALEjaily, I. A. El Rube, and M. A. Mangoud. Fusion of remote sensing images using contourlet transform. Springer, Berlin, pages 213–218, 2008.Google Scholar
  20. 20.
    X.-H. Yang and L.-C. Jiao. Fusion algorithm for remote sensing images based on nonsubsampled contourlet transform. Acta Automatica Sinica, 34(2):274–281, 2008.zbMATHGoogle Scholar
  21. 21.
    J. Wu, H. Huang, J. Liu, and J. Tian. Remote sensing image data fusion based on ihs and local deviation of wavelet transformation. In Proc. IEEE Int. Conf. on Robotics and Biomimetics ROBIO 2004, pages 564–568, 2004.Google Scholar
  22. 22.
    M. González-Audícana, J. L. Saleta, R. García Catalán, and R. García. Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition. IEEE Trans. Geosc. Remote Sens., 42(6):1291–1298, 2004.ADSCrossRefGoogle Scholar
  23. 23.
    V. Vijayaraj, C. G. O’Hara, and N. H. Younan. Quality analysis of pansharpened images. In Proc. IEEE Int. Geosc. Remote Sens. Symp. IGARSS ’04, volume 1, 2004.Google Scholar
  24. 24.
    Z. Wang and A. C. Bovik. A universal image quality index. IEEE Signal Process. Lett., 9(3):81–84, 2002.ADSCrossRefGoogle Scholar
  25. 25.
    L. Wald. Quality of high resolution synthesized images: Is there a simple criterion? In Proc. Int. Conf. Fusion of Earth Data., Nice, France, pages 99–105, 2000.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Universidad de GranadaGranadaSpain
  2. 2.Al-Quds Open UniversityHepronPalestine

Personalised recommendations