Advertisement

Nanophotonics for Information Systems

  • Y. Fainman
  • D. T. H. Tan
  • K. Ikeda
  • M. Abashin
Chapter

Abstract

The field of photonics finds applications in information technology, health care, lighting, and sensing. This chapter explores the role of nanotechnology with focus on nanophotonics in dielectric and inhomogeneous metamaterials for optical communications, computing, and information and signal processing.

Keywords

Wavelength Division Multiplex Group Delay Group Velocity Dispersion Couple Mode Theory Vertical Grating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers and N. F. van Hulstdagger, “Tracking femtosecond laser pulses in space and time,” Science 294, 1080–1082, 2001ADSCrossRefGoogle Scholar
  2. 2.
    M. Abashin, K. Ikeda, R. Saperstein and Y. Fainman, “Heterodyne near-field scanning optical microscopy with spectrally broad sources,” Opt. Lett. 34, 1327–1329, 2009ADSCrossRefGoogle Scholar
  3. 3.
    Y. Fainman, E. Klancnik and S. H. Lee, “Optimal coherent image amplification by two beam coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234, 1986ADSCrossRefGoogle Scholar
  4. 4.
    Y. Fainman, C. C. Guest and S. H. Lee, “Optical digital logic operations by two beam coupling in photorefractive material,” Appl. Opt. 25, 1598–1603, 1986ADSCrossRefGoogle Scholar
  5. 5.
    P. Ambs, S. H. Lee, Q. Tian and Y. Fainman, “Optical implementation of the Hough transform by a matrix of holograms,” Appl. Opt. 25, 4039–4045, 1986ADSCrossRefGoogle Scholar
  6. 6.
    P. Ambs, Y. Fainman, S. H. Lee and J. Gresser, “Computerized design and generation of space-variant holographic filters. Part I: System design considerations and applications of space-variant filters to image processing,” Appl. Opt. 27, 4753–4760, 1988Google Scholar
  7. 7.
    Q. Tian, Y. Fainman, Z. H. Gu and S. H. Lee, “Comparison of statistical pattern recognition algorithms for hybrid processing. Part I: Linear mapping algorithms,” J. Opt. Soc. Am. A 5, 1655–1669, 1988Google Scholar
  8. 8.
    Q. Tian, Y. Fainman and S. H. Lee, “Comparison of statistical pattern recognition algorithms for hybrid processing. Part II: Eigenvector-based algorithms,” J. Opt. Soc. Am. A 5, 1670–1682, 1988Google Scholar
  9. 9.
    J. Y. Jau, Y. Fainman and S. H. Lee, “Comparison of artificial neural network with pattern recognition and signal processing,” Appl. Opt. 28, 302–305, 1989ADSCrossRefGoogle Scholar
  10. 10.
    H. Rajbenbach, Y. Fainman and S. H. Lee, “Optical implementation of an iterative algorithm for matrix inversion,” Appl. Opt. 26, 1024–1031, 1987ADSCrossRefGoogle Scholar
  11. 11.
    P. C. Sun, Y. Mazurenko, W. Chang, P. Yu and Y. Fainman, “All-optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding,” Opt. Lett. 20, 1728–1730, 1995ADSCrossRefGoogle Scholar
  12. 12.
    P. C. Sun, Y. Mazurenko and Y. Fainman, “Femtosecond pulse imaging: ultrafast optical oscilloscope,” J. Opt. Soc. Am. A 14, 1159–1169, 1997ADSCrossRefGoogle Scholar
  13. 13.
    D. M. Marom, D. Panasenko, P. C. Sun and Y. Fainman, “Spatial-temporal wave mixing for space-time conversion,” Opt. Lett. 24, 563–565, 1999ADSCrossRefGoogle Scholar
  14. 14.
    R. E. Saperstein, D. Panasenko and Y. Fainman, “Demonstration of a microwave spectrum analyzer based on time-domain optical processing in fiber,” Opt. Lett. 29, 501–503, 2004ADSCrossRefGoogle Scholar
  15. 15.
    J. D. Joannopoulos, S. G. Johnson, J. N. Winn and R. D. Meade, “Photonic Crystals: Molding the Flow of Light,” 2nd ed., Princeton University Press, Princeton, 2008zbMATHGoogle Scholar
  16. 16.
    A E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062, 1987Google Scholar
  17. 17.
    S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489, 1987ADSCrossRefGoogle Scholar
  18. 18.
    M. Abashin, P. Tortora, I. Marki, U. Levy, W. Nakagawa, L. Vaccaro, H. Herzig and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Express 14, 1643–1657, 2006ADSCrossRefGoogle Scholar
  19. 19.
    R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith and K. Kash, “Novel applications of photonic band gap materials: Low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753, 1994ADSCrossRefGoogle Scholar
  20. 20.
    I. Richter, P. C. Sun, F. Xu and Y. Fainman, “Design considerations of form birefringent microstructures,” Appl. Opt. 34, 2421–2429, 1995ADSCrossRefGoogle Scholar
  21. 21.
    R. Tyan, P. C. Sun, A. Scherer and Y. Fainman, “Polarizing beam splitter based on the anosotropic spectral reflectivity characteristic of form-birefringent multilayer grating,” Opt. Lett. 21, 761–763, 1996ADSCrossRefGoogle Scholar
  22. 22.
    W. Nakagawa, P. C. Sun, C. H. Chen and Y. Fainman, “Wide field of view narrow band spectral filter base on photonic crystal nanocavities,” Opt. Lett. 27, 191–193, 2002ADSCrossRefGoogle Scholar
  23. 23.
    S. Lin, E. Chow, V. Hietala, P. R. Villeneuve and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276, 1998ADSCrossRefGoogle Scholar
  24. 24.
    H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212, 1999ADSCrossRefGoogle Scholar
  25. 25.
    E. Schonbrun, Q. Wu, W. Park, T. Yamashita, C. J. Summers, M. Abashin and Y. Fainman, “Wave front evolution of negatively refracted waves in a photonic crystal,” Appl. Phys. Lett. 90, 041113, 2007ADSCrossRefGoogle Scholar
  26. 26.
    H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096, 1998ADSCrossRefGoogle Scholar
  27. 27.
    E. Schonbrun, M. Abashin, J. Blair, Q. Wu, W. Park, Y. Fainman and C. J. Summers, “Total internal reflection photonic crystal prism,” Opt. Express 15, 8065–8075, 2007ADSCrossRefGoogle Scholar
  28. 28.
    C. Luo, S. G. Johnson and J. D. Joannapoulos, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115, 2003ADSCrossRefGoogle Scholar
  29. 29.
    Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682, 1998ADSCrossRefGoogle Scholar
  30. 30.
    O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821, 1999CrossRefGoogle Scholar
  31. 31.
    U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett. 98, 243901, 2007ADSCrossRefGoogle Scholar
  32. 32.
    D. W. Pohl, W. Denk and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651, 1984ADSCrossRefGoogle Scholar
  33. 33.
    A. Lewis, M. Isaacson, A. Harootunian, et al., “Development of a 500Å spatial resolution light microscope I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13, 227, 1984Google Scholar
  34. 34.
    G. A. Valaskovic, M. Holton and G. H. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,” Appl. Opt. 34, 1215–1228, 1995ADSCrossRefGoogle Scholar
  35. 35.
    A. Nesci and Y. Fainman, “Complex amplitude of an ultrashort pulse with femtosecond resolution in a waveguide using a coherent NSOM at 1550 nm,” In Wave Optics and Photonic Devices for Optical Information Processing II, P. Ambs and F. R. Beyette, Jr., eds., Proc. SPIE 5181, 62–69, 2003Google Scholar
  36. 36.
    F. Xu, R. Tyan, P. C. Sun, C. Cheng, A. Scherer and Y. Fainman, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett. 20, 2457–2459, 1995ADSCrossRefGoogle Scholar
  37. 37.
    R.-C. Tyan, A. Salvekar, C.-C. Cheng, A. Scherer, F. Xu, P. C. Sun and Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14, 1627–1636, 1997ADSCrossRefGoogle Scholar
  38. 38.
    F. Xu, R.-C. Tyan, P.-C. Sun, Y. Fainman, C.-C. Cheng and A. Scherer, “Form-birefringent computer-generated holograms,” Opt. Lett. 21(18), 1513, 1996Google Scholar
  39. 39.
    W. Nakagawa, R. Tyan and Y. Fainman, “Analysis of enhanced second-harmonic generation in periodic nanostructures using modified rigorous coupled-wave analysis in the undepleted-pump approximation,” J. Opt. Soc. Am. A 19, 1919–1928, 2002ADSCrossRefGoogle Scholar
  40. 40.
    U. Levy, C. H. Tsai, L. Pang and Y. Fainman, “Engineering space-variant inhomogeneous media for polarization control,” Opt. Lett. 29, 1718–1720, 2004ADSCrossRefGoogle Scholar
  41. 41.
    U. Levy, M. Nezhad, H.-C. Kim, C.-H. Tsai, L. Pang and Y. Fainman, “Implementation of a graded-index medium by use of subwavelength structures with graded fill factor,” J. Opt. Soc.Am. A 22, 724–733, 2005ADSCrossRefGoogle Scholar
  42. 42.
    J. N. Mait, A. Scherer, O. Dial, D. W. Prather and X. Gao, “Diffractive lens fabricated with binary features less than 60 nm,” Opt. Lett. 25, 381–383, 2000ADSCrossRefGoogle Scholar
  43. 43.
    S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475, 1956Google Scholar
  44. 44.
    E. N. Glytsis and T. K. Gaylord, “High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces,” Appl. Opt. 31, 4459–4470, 1992ADSCrossRefGoogle Scholar
  45. 45.
    P. Lalanne and D. L. Lalanne, “Depth dependence of the effective properties of subwavelength gratings,” J. Opt. Soc. Am. A 14, 450–458, 1997ADSCrossRefGoogle Scholar
  46. 46.
    U. Levy and Y. Fainman, “Dispersion properties of inhomogeneous nanostructures,” J. Opt. Soc. Am. A. 21, 881–889, 2004ADSCrossRefGoogle Scholar
  47. 47.
    C. C. Cheng, A. Scherer, R. C. Tyan, Y. Fainman, C. Witzgall and E. Yablonovitch, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. B 15, 2764–2767, 1997CrossRefGoogle Scholar
  48. 48.
    H. C. Kim, K. Ikeda and Y. Fainman, “Resonant waveguide device with vertical gratings,” Opt. Lett. 32, 539–541, 2007ADSCrossRefGoogle Scholar
  49. 49.
    D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett. 33, 3013–3015, 2008ADSCrossRefGoogle Scholar
  50. 50.
    H. C. Kim, K. Ikeda and Y. Fainman, “Tunable transmission resonant filter and modulator with vertical gratings,” J. Lightwave Technol. 25, 1147–1151, 2007ADSCrossRefGoogle Scholar
  51. 51.
    H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Sys. Tech. J. 55, 109–126, 1975Google Scholar
  52. 52.
    M. Gnan, G. Bellanca, H. M. H. Chong, P. Bassi and R. M. De la Rue, “Modeling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38, 133, 2006CrossRefGoogle Scholar
  53. 53.
    V. R. Almeida, R. R. Panepucci and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1304, 2003ADSCrossRefGoogle Scholar
  54. 54.
    R. Kashyap, Fiber Bragg Gratings. Academic, New York, 1999Google Scholar
  55. 55.
    K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert and K. Takiguchi, “Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion,” Opt. Lett. 19, 1314–1316, 1994ADSCrossRefGoogle Scholar
  56. 56.
    M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902, 2001ADSCrossRefGoogle Scholar
  57. 57.
    A. C. Turner, C. Manolatou, B. S. Schmidt and M. Lipson, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362, 2006ADSCrossRefGoogle Scholar
  58. 58.
    A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, L. P. Koo, C. G. Askins, M. A. Putnam and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463, 1997ADSCrossRefGoogle Scholar
  59. 59.
    K. Ikeda, M. Nezhad and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92, 201111, 2008ADSCrossRefGoogle Scholar
  60. 60.
    D. T. H. Tan, K. Ikeda and Y. Fainman, “Cladding-modulated Bragg gratings in silicon wave-guides,” Opt. Lett. 34, 1357–1359, 2009ADSCrossRefGoogle Scholar
  61. 61.
    A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933, 1973ADSCrossRefGoogle Scholar
  62. 62.
    D. C. Flanders, H. Kogelnik, R. V. Schmidt and C. V. Shank, “Grating filters for thin-film optical-waveguides,” Appl. Phys. Lett. 24, 194–196, 1974ADSCrossRefGoogle Scholar
  63. 63.
    V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084, 2004ADSCrossRefGoogle Scholar
  64. 64.
    P. Yeh and H. F. Taylor, “Contradirectional frequency-selective couplers for guided-wave optics,” Appl. Opt. 19, 2848–2855, 1980ADSCrossRefGoogle Scholar
  65. 65.
    C. Wagner and N. Harned, “EUV lithography: Lithography gets extreme,” Nature Photonics 4, 24–26, 2010ADSCrossRefGoogle Scholar
  66. 66.
    M. Abashin, U. Levy, K. Ikeda and Y. Fainman, “Effects produced by metal-coated near-field probes on the performance of silicon waveguides and resonators,” Opt. Lett. 32, 2602–2604, 2007ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of CaliforniaSan DiegoUSA

Personalised recommendations