Skip to main content

Nanophotonics for Information Systems

  • Chapter
  • First Online:
Information Optics and Photonics

Abstract

The field of photonics finds applications in information technology, health care, lighting, and sensing. This chapter explores the role of nanotechnology with focus on nanophotonics in dielectric and inhomogeneous metamaterials for optical communications, computing, and information and signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. L. M. Balistreri, H. Gersen, J. P. Korterik, L. Kuipers and N. F. van Hulstdagger, “Tracking femtosecond laser pulses in space and time,” Science 294, 1080–1082, 2001

    Article  ADS  Google Scholar 

  2. M. Abashin, K. Ikeda, R. Saperstein and Y. Fainman, “Heterodyne near-field scanning optical microscopy with spectrally broad sources,” Opt. Lett. 34, 1327–1329, 2009

    Article  ADS  Google Scholar 

  3. Y. Fainman, E. Klancnik and S. H. Lee, “Optimal coherent image amplification by two beam coupling in photorefractive BaTiO3,” Opt. Eng. 25, 228–234, 1986

    Article  ADS  Google Scholar 

  4. Y. Fainman, C. C. Guest and S. H. Lee, “Optical digital logic operations by two beam coupling in photorefractive material,” Appl. Opt. 25, 1598–1603, 1986

    Article  ADS  Google Scholar 

  5. P. Ambs, S. H. Lee, Q. Tian and Y. Fainman, “Optical implementation of the Hough transform by a matrix of holograms,” Appl. Opt. 25, 4039–4045, 1986

    Article  ADS  Google Scholar 

  6. P. Ambs, Y. Fainman, S. H. Lee and J. Gresser, “Computerized design and generation of space-variant holographic filters. Part I: System design considerations and applications of space-variant filters to image processing,” Appl. Opt. 27, 4753–4760, 1988

    Google Scholar 

  7. Q. Tian, Y. Fainman, Z. H. Gu and S. H. Lee, “Comparison of statistical pattern recognition algorithms for hybrid processing. Part I: Linear mapping algorithms,” J. Opt. Soc. Am. A 5, 1655–1669, 1988

    Google Scholar 

  8. Q. Tian, Y. Fainman and S. H. Lee, “Comparison of statistical pattern recognition algorithms for hybrid processing. Part II: Eigenvector-based algorithms,” J. Opt. Soc. Am. A 5, 1670–1682, 1988

    Google Scholar 

  9. J. Y. Jau, Y. Fainman and S. H. Lee, “Comparison of artificial neural network with pattern recognition and signal processing,” Appl. Opt. 28, 302–305, 1989

    Article  ADS  Google Scholar 

  10. H. Rajbenbach, Y. Fainman and S. H. Lee, “Optical implementation of an iterative algorithm for matrix inversion,” Appl. Opt. 26, 1024–1031, 1987

    Article  ADS  Google Scholar 

  11. P. C. Sun, Y. Mazurenko, W. Chang, P. Yu and Y. Fainman, “All-optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding,” Opt. Lett. 20, 1728–1730, 1995

    Article  ADS  Google Scholar 

  12. P. C. Sun, Y. Mazurenko and Y. Fainman, “Femtosecond pulse imaging: ultrafast optical oscilloscope,” J. Opt. Soc. Am. A 14, 1159–1169, 1997

    Article  ADS  Google Scholar 

  13. D. M. Marom, D. Panasenko, P. C. Sun and Y. Fainman, “Spatial-temporal wave mixing for space-time conversion,” Opt. Lett. 24, 563–565, 1999

    Article  ADS  Google Scholar 

  14. R. E. Saperstein, D. Panasenko and Y. Fainman, “Demonstration of a microwave spectrum analyzer based on time-domain optical processing in fiber,” Opt. Lett. 29, 501–503, 2004

    Article  ADS  Google Scholar 

  15. J. D. Joannopoulos, S. G. Johnson, J. N. Winn and R. D. Meade, “Photonic Crystals: Molding the Flow of Light,” 2nd ed., Princeton University Press, Princeton, 2008

    MATH  Google Scholar 

  16. A E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062, 1987

    Google Scholar 

  17. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489, 1987

    Article  ADS  Google Scholar 

  18. M. Abashin, P. Tortora, I. Marki, U. Levy, W. Nakagawa, L. Vaccaro, H. Herzig and Y. Fainman, “Near-field characterization of propagating optical modes in photonic crystal waveguides,” Opt. Express 14, 1643–1657, 2006

    Article  ADS  Google Scholar 

  19. R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith and K. Kash, “Novel applications of photonic band gap materials: Low-loss bends and high Q cavities,” J. Appl. Phys. 75, 4753, 1994

    Article  ADS  Google Scholar 

  20. I. Richter, P. C. Sun, F. Xu and Y. Fainman, “Design considerations of form birefringent microstructures,” Appl. Opt. 34, 2421–2429, 1995

    Article  ADS  Google Scholar 

  21. R. Tyan, P. C. Sun, A. Scherer and Y. Fainman, “Polarizing beam splitter based on the anosotropic spectral reflectivity characteristic of form-birefringent multilayer grating,” Opt. Lett. 21, 761–763, 1996

    Article  ADS  Google Scholar 

  22. W. Nakagawa, P. C. Sun, C. H. Chen and Y. Fainman, “Wide field of view narrow band spectral filter base on photonic crystal nanocavities,” Opt. Lett. 27, 191–193, 2002

    Article  ADS  Google Scholar 

  23. S. Lin, E. Chow, V. Hietala, P. R. Villeneuve and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276, 1998

    Article  ADS  Google Scholar 

  24. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212, 1999

    Article  ADS  Google Scholar 

  25. E. Schonbrun, Q. Wu, W. Park, T. Yamashita, C. J. Summers, M. Abashin and Y. Fainman, “Wave front evolution of negatively refracted waves in a photonic crystal,” Appl. Phys. Lett. 90, 041113, 2007

    Article  ADS  Google Scholar 

  26. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096, 1998

    Article  ADS  Google Scholar 

  27. E. Schonbrun, M. Abashin, J. Blair, Q. Wu, W. Park, Y. Fainman and C. J. Summers, “Total internal reflection photonic crystal prism,” Opt. Express 15, 8065–8075, 2007

    Article  ADS  Google Scholar 

  28. C. Luo, S. G. Johnson and J. D. Joannapoulos, “Subwavelength imaging in photonic crystals,” Phys. Rev. B 68, 045115, 2003

    Article  ADS  Google Scholar 

  29. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682, 1998

    Article  ADS  Google Scholar 

  30. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821, 1999

    Article  Google Scholar 

  31. U. Levy, M. Abashin, K. Ikeda, A. Krishnamoorthy, J. Cunningham and Y. Fainman, “Inhomogenous dielectric metamaterials with space-variant polarizability,” Phys. Rev. Lett. 98, 243901, 2007

    Article  ADS  Google Scholar 

  32. D. W. Pohl, W. Denk and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651, 1984

    Article  ADS  Google Scholar 

  33. A. Lewis, M. Isaacson, A. Harootunian, et al., “Development of a 500Å spatial resolution light microscope I. light is efficiently transmitted through λ/16 diameter apertures,” Ultramicroscopy 13, 227, 1984

    Google Scholar 

  34. G. A. Valaskovic, M. Holton and G. H. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,” Appl. Opt. 34, 1215–1228, 1995

    Article  ADS  Google Scholar 

  35. A. Nesci and Y. Fainman, “Complex amplitude of an ultrashort pulse with femtosecond resolution in a waveguide using a coherent NSOM at 1550 nm,” In Wave Optics and Photonic Devices for Optical Information Processing II, P. Ambs and F. R. Beyette, Jr., eds., Proc. SPIE 5181, 62–69, 2003

    Google Scholar 

  36. F. Xu, R. Tyan, P. C. Sun, C. Cheng, A. Scherer and Y. Fainman, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett. 20, 2457–2459, 1995

    Article  ADS  Google Scholar 

  37. R.-C. Tyan, A. Salvekar, C.-C. Cheng, A. Scherer, F. Xu, P. C. Sun and Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14, 1627–1636, 1997

    Article  ADS  Google Scholar 

  38. F. Xu, R.-C. Tyan, P.-C. Sun, Y. Fainman, C.-C. Cheng and A. Scherer, “Form-birefringent computer-generated holograms,” Opt. Lett. 21(18), 1513, 1996

    Google Scholar 

  39. W. Nakagawa, R. Tyan and Y. Fainman, “Analysis of enhanced second-harmonic generation in periodic nanostructures using modified rigorous coupled-wave analysis in the undepleted-pump approximation,” J. Opt. Soc. Am. A 19, 1919–1928, 2002

    Article  ADS  Google Scholar 

  40. U. Levy, C. H. Tsai, L. Pang and Y. Fainman, “Engineering space-variant inhomogeneous media for polarization control,” Opt. Lett. 29, 1718–1720, 2004

    Article  ADS  Google Scholar 

  41. U. Levy, M. Nezhad, H.-C. Kim, C.-H. Tsai, L. Pang and Y. Fainman, “Implementation of a graded-index medium by use of subwavelength structures with graded fill factor,” J. Opt. Soc.Am. A 22, 724–733, 2005

    Article  ADS  Google Scholar 

  42. J. N. Mait, A. Scherer, O. Dial, D. W. Prather and X. Gao, “Diffractive lens fabricated with binary features less than 60 nm,” Opt. Lett. 25, 381–383, 2000

    Article  ADS  Google Scholar 

  43. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475, 1956

    Google Scholar 

  44. E. N. Glytsis and T. K. Gaylord, “High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces,” Appl. Opt. 31, 4459–4470, 1992

    Article  ADS  Google Scholar 

  45. P. Lalanne and D. L. Lalanne, “Depth dependence of the effective properties of subwavelength gratings,” J. Opt. Soc. Am. A 14, 450–458, 1997

    Article  ADS  Google Scholar 

  46. U. Levy and Y. Fainman, “Dispersion properties of inhomogeneous nanostructures,” J. Opt. Soc. Am. A. 21, 881–889, 2004

    Article  ADS  Google Scholar 

  47. C. C. Cheng, A. Scherer, R. C. Tyan, Y. Fainman, C. Witzgall and E. Yablonovitch, “New fabrication techniques for high quality photonic crystals,” J. Vac. Sci. Technol. B 15, 2764–2767, 1997

    Article  Google Scholar 

  48. H. C. Kim, K. Ikeda and Y. Fainman, “Resonant waveguide device with vertical gratings,” Opt. Lett. 32, 539–541, 2007

    Article  ADS  Google Scholar 

  49. D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett. 33, 3013–3015, 2008

    Article  ADS  Google Scholar 

  50. H. C. Kim, K. Ikeda and Y. Fainman, “Tunable transmission resonant filter and modulator with vertical gratings,” J. Lightwave Technol. 25, 1147–1151, 2007

    Article  ADS  Google Scholar 

  51. H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Sys. Tech. J. 55, 109–126, 1975

    Google Scholar 

  52. M. Gnan, G. Bellanca, H. M. H. Chong, P. Bassi and R. M. De la Rue, “Modeling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38, 133, 2006

    Article  Google Scholar 

  53. V. R. Almeida, R. R. Panepucci and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28, 1302–1304, 2003

    Article  ADS  Google Scholar 

  54. R. Kashyap, Fiber Bragg Gratings. Academic, New York, 1999

    Google Scholar 

  55. K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert and K. Takiguchi, “Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion,” Opt. Lett. 19, 1314–1316, 1994

    Article  ADS  Google Scholar 

  56. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi and I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902, 2001

    Article  ADS  Google Scholar 

  57. A. C. Turner, C. Manolatou, B. S. Schmidt and M. Lipson, “Tailored anomalous group-velocity dispersion in silicon channel waveguides,” Opt. Express 14, 4357–4362, 2006

    Article  ADS  Google Scholar 

  58. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, L. P. Koo, C. G. Askins, M. A. Putnam and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463, 1997

    Article  ADS  Google Scholar 

  59. K. Ikeda, M. Nezhad and Y. Fainman, “Wavelength selective coupler with vertical gratings on silicon chip,” Appl. Phys. Lett. 92, 201111, 2008

    Article  ADS  Google Scholar 

  60. D. T. H. Tan, K. Ikeda and Y. Fainman, “Cladding-modulated Bragg gratings in silicon wave-guides,” Opt. Lett. 34, 1357–1359, 2009

    Article  ADS  Google Scholar 

  61. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919–933, 1973

    Article  ADS  Google Scholar 

  62. D. C. Flanders, H. Kogelnik, R. V. Schmidt and C. V. Shank, “Grating filters for thin-film optical-waveguides,” Appl. Phys. Lett. 24, 194–196, 1974

    Article  ADS  Google Scholar 

  63. V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084, 2004

    Article  ADS  Google Scholar 

  64. P. Yeh and H. F. Taylor, “Contradirectional frequency-selective couplers for guided-wave optics,” Appl. Opt. 19, 2848–2855, 1980

    Article  ADS  Google Scholar 

  65. C. Wagner and N. Harned, “EUV lithography: Lithography gets extreme,” Nature Photonics 4, 24–26, 2010

    Article  ADS  Google Scholar 

  66. M. Abashin, U. Levy, K. Ikeda and Y. Fainman, “Effects produced by metal-coated near-field probes on the performance of silicon waveguides and resonators,” Opt. Lett. 32, 2602–2604, 2007

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Fainman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fainman, Y., Tan, D.T.H., Ikeda, K., Abashin, M. (2010). Nanophotonics for Information Systems. In: Javidi, B., Fournel, T. (eds) Information Optics and Photonics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7380-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7380-1_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7379-5

  • Online ISBN: 978-1-4419-7380-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics