Advertisement

A Degree of Freedom and Metrics Approach for Nonsingular Mueller Matrices Characterizing Passive Systems

  • V. Devlaminck
  • P. Terrier
Chapter

Abstract

In this paper, we are interested to define and analyze a general parametric form of nonsingular Mueller matrices. Starting from previous results about the nondepolarizing matrices, we generalize the method to any nonsingular Mueller matrices. We addressed this problem from the point of view of metrics and degrees of freedom in order to introduce a physical admissible solution to solve this question. Generators of this group are used to address the issue of the dimension of the full space in order to obtain an adequate number of degrees of freedom of the related Mueller subspace.

References

  1. 1.
    Z. F. Xing, “On the deterministic and non-deterministic Mueller matrix”, J. Mod. Opt. 39, 461–484 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    V. M. van der Mee, “An eigenvalue criterion for matrices transforming Stokes parameters”, J. Math. Phys. 34, 5072–5088 (1993)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    J. W. Hovenier, “Structure of a general pure Mueller matrix”, App. Opt. 33, 8318–8324 (1994)ADSCrossRefGoogle Scholar
  4. 4.
    A. V. Gopala Rao, K. S. Mallesh, and J. Sudha, “On the algebraic characterization of a Mueller matrix in polarization optics. I. Identifying a Mueller matrix from its N matrix”, J. Mod. Opt. 45, 955–987 (1998)Google Scholar
  5. 5.
    M. S. Kumar and R. Simon, “Characterization of Mueller matrices in polarization optics”, Opt. Commun. 88, 464–470 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    A. B. Kostinski, C. R. Given, and J. M. Kwiatkowski, “Constraints on Mueller matrices of polarization optics”, Appl. Opt. 32, 1646–1651 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    C.R. Givens and B. Kostinski, “A simple necessary and sufficient condition on physically realizable Mueller matrices”, J. Mod. Opt. 40, 471–481 (1993)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    R. Simon, “The connection between Mueller and Jones matrices of polarization optics”, Opt. Com. 42, 293–297 (1982)ADSCrossRefGoogle Scholar
  9. 9.
    D. G. M. Anderson and R. Barakat, “Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix”, J. Opt. Soc. Am. A 11, 2305–2319 (1994)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    J. J. Gil, “Characteristic properties of Mueller matrices”, J. Opt. Soc. Am. A 17, 328–334 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    E.S. Fry and G.W. Kattawar, “Relationships between elements of the Stokes matrix”, Appl. Opt. 20, 2811–2814 (1981)ADSCrossRefGoogle Scholar
  12. 12.
    S.R. Cloude, “Group theory and polarisation algebra”, Optik 75, 26–36 (1986)Google Scholar
  13. 13.
    K. Kim, L. Mandel, and E. Wolf, “Relationship between Jones and Mueller matrices for random media”, J. Opt. Soc. Am. A 4, 433–437 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Takakura and M.-P. Stoll, “Passivity test of Mueller matrices in the presence of additive Gaussian noise”, Appl. Opt. 48, 1073–1083 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    D. H. Sattiger and O. L. Weaver, Lie Group and Algebras with Applications to Physics, Geometry and Mechanics, (Springer Verlag, New York, 1991)Google Scholar
  16. 16.
    V. Devlaminck and P. Terrier, “Definition of a parametric form of nonsingular Mueller matrices”, J. Opt. Soc. Am. A 25, 2636–2643 (2008)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    R. Sridhar and R. Simon, “Normal form for Mueller matrices in polarization optics”, J. Mod. Opt. 41, 1903–1915 (1994)MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    A. A. Sagle and R. E. Walde, Introduction to Lie groups and Lie algebras, (Academic Press, New York 1973)Google Scholar
  19. 19.
    S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition”, J. Opt. Soc. Am. A 13, 1106–1113 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.LAGIS FRE CNRS 3303Université Lille 1, Sciences et TechnologiesVilleneuve d’AscqFrance

Personalised recommendations