Skip to main content

A Degree of Freedom and Metrics Approach for Nonsingular Mueller Matrices Characterizing Passive Systems

  • Chapter
  • First Online:
Information Optics and Photonics
  • 1333 Accesses

Abstract

In this paper, we are interested to define and analyze a general parametric form of nonsingular Mueller matrices. Starting from previous results about the nondepolarizing matrices, we generalize the method to any nonsingular Mueller matrices. We addressed this problem from the point of view of metrics and degrees of freedom in order to introduce a physical admissible solution to solve this question. Generators of this group are used to address the issue of the dimension of the full space in order to obtain an adequate number of degrees of freedom of the related Mueller subspace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Lorentz group is the union of four disconnected pieces [15]. The restriction to those transformations which are continuously connected to the identity transformation is called the proper orthochronous Lorentz transformations and denoted SO(3, 1) e as the identity component of SO(3, 1), the associated special orthogonal group.

  2. 2.

    Matrices with unit determinant and positive left upper corner element are the SO(N − 1, 1) e subgroup elements.

  3. 3.

    It is possible to identify missing matrices as ones with equal depolarization factor along the three principal axis with a non-null polarizance or diattenuation vector.

References

  1. Z. F. Xing, “On the deterministic and non-deterministic Mueller matrix”, J. Mod. Opt. 39, 461–484 (1992)

    Article  ADS  Google Scholar 

  2. V. M. van der Mee, “An eigenvalue criterion for matrices transforming Stokes parameters”, J. Math. Phys. 34, 5072–5088 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. J. W. Hovenier, “Structure of a general pure Mueller matrix”, App. Opt. 33, 8318–8324 (1994)

    Article  ADS  Google Scholar 

  4. A. V. Gopala Rao, K. S. Mallesh, and J. Sudha, “On the algebraic characterization of a Mueller matrix in polarization optics. I. Identifying a Mueller matrix from its N matrix”, J. Mod. Opt. 45, 955–987 (1998)

    Google Scholar 

  5. M. S. Kumar and R. Simon, “Characterization of Mueller matrices in polarization optics”, Opt. Commun. 88, 464–470 (1992)

    Article  ADS  Google Scholar 

  6. A. B. Kostinski, C. R. Given, and J. M. Kwiatkowski, “Constraints on Mueller matrices of polarization optics”, Appl. Opt. 32, 1646–1651 (1993)

    Article  ADS  Google Scholar 

  7. C.R. Givens and B. Kostinski, “A simple necessary and sufficient condition on physically realizable Mueller matrices”, J. Mod. Opt. 40, 471–481 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. R. Simon, “The connection between Mueller and Jones matrices of polarization optics”, Opt. Com. 42, 293–297 (1982)

    Article  ADS  Google Scholar 

  9. D. G. M. Anderson and R. Barakat, “Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix”, J. Opt. Soc. Am. A 11, 2305–2319 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  10. J. J. Gil, “Characteristic properties of Mueller matrices”, J. Opt. Soc. Am. A 17, 328–334 (2000)

    Article  ADS  Google Scholar 

  11. E.S. Fry and G.W. Kattawar, “Relationships between elements of the Stokes matrix”, Appl. Opt. 20, 2811–2814 (1981)

    Article  ADS  Google Scholar 

  12. S.R. Cloude, “Group theory and polarisation algebra”, Optik 75, 26–36 (1986)

    Google Scholar 

  13. K. Kim, L. Mandel, and E. Wolf, “Relationship between Jones and Mueller matrices for random media”, J. Opt. Soc. Am. A 4, 433–437 (1987)

    Article  ADS  Google Scholar 

  14. Y. Takakura and M.-P. Stoll, “Passivity test of Mueller matrices in the presence of additive Gaussian noise”, Appl. Opt. 48, 1073–1083 (2009)

    Article  ADS  Google Scholar 

  15. D. H. Sattiger and O. L. Weaver, Lie Group and Algebras with Applications to Physics, Geometry and Mechanics, (Springer Verlag, New York, 1991)

    Google Scholar 

  16. V. Devlaminck and P. Terrier, “Definition of a parametric form of nonsingular Mueller matrices”, J. Opt. Soc. Am. A 25, 2636–2643 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  17. R. Sridhar and R. Simon, “Normal form for Mueller matrices in polarization optics”, J. Mod. Opt. 41, 1903–1915 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. A. A. Sagle and R. E. Walde, Introduction to Lie groups and Lie algebras, (Academic Press, New York 1973)

    Google Scholar 

  19. S. Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition”, J. Opt. Soc. Am. A 13, 1106–1113 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Devlaminck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Devlaminck, V., Terrier, P. (2010). A Degree of Freedom and Metrics Approach for Nonsingular Mueller Matrices Characterizing Passive Systems. In: Javidi, B., Fournel, T. (eds) Information Optics and Photonics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7380-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7380-1_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7379-5

  • Online ISBN: 978-1-4419-7380-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics