Partial Polarization of Optical Beams: Temporal and Spectral Descriptions

  • Tero Setälä
  • Ferdinando Nunziata
  • Ari T. Friberg


A fluctuating, statistically stationary, polychromatic electromagnetic field can, at any instant of time, be regarded as fully polarized but on time average or in the frequency space its state of polarization may be quite different. In this chapter, we analyze the variations between the degrees of polarization of optical beams in time and frequency domains. We point out the origins of the differences and illustrate the physical consequences by several examples.


Frequency Domain Polarization Property Partial Polarization Partial Coherence Complex Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the Academy of Finland. A.T. Friberg also acknowledges funding from the Swedish Foundation for Strategic Research (SSF). The authors thank A. Shevchenko for useful discussions.


  1. 1.
    T. Setälä, A. Shevchenko, M. Kaivola, and A.T. Friberg, Phys. Rev. A 78, 033817 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    A. Shevchenko, T. Setälä, M. Kaivola, and A.T. Friberg, New J. Phys. 11, 073004 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, Cambridge, UK, 2007).zbMATHGoogle Scholar
  4. 4.
    L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995).Google Scholar
  5. 5.
    L. Mandel and E. Wolf, J. Opt. Soc. Am. 66, 529–535 (1976).CrossRefGoogle Scholar
  6. 6.
    A.T. Friberg and E. Wolf, Opt. Lett. 20, 623–625 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    M. Beran and G.B. Parrent, Theory of Partial Coherence (Prentice-Hall, Englewood Cliffs, NJ, 1963).Google Scholar
  8. 8.
    E. Wolf, Opt. Lett. 8, 250–252 (1983).ADSCrossRefGoogle Scholar
  9. 9.
    L. Basano, P. Ottonello, G. Rottigni, and M. Vicari, Appl. Opt. 42, 6239–6244 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    B. Kanseri and H.C. Kandpal, Opt. Lett. 35, 70–72 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    T. Setälä, F. Nunziata, and A.T. Friberg, in Partial Electromagnetic Coherence and 3D Polarization (Koli Workshop, University of Joensuu, 2009), pp. 66–67.Google Scholar
  12. 12.
    T. Setälä, F. Nunziata, and A.T. Friberg, J. Phys. Conf. Ser. 206, 012001 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    T. Setälä, F. Nunziata, and A.T. Friberg, Opt. Lett. 34, 2924–2926 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    M. Lahiri, Opt. Lett. 34, 2936–2938 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, New York, 1998).Google Scholar
  16. 16.
    T. Setälä, A. Shevchenko, M. Kaivola, and A.T. Friberg, Phys. Rev. E 66, 016615 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    K. Lindfors, T. Setälä, M. Kaivola, and A.T. Friberg, J. Opt. Soc. Am. A 22, 561–568 (2005).ADSGoogle Scholar
  18. 18.
    K. Lindfors, A. Priimagi, T. Setälä, A. Shevchenko, A.T. Friberg, and M. Kaivola, Nature Phot. 1, 228–231 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    E. Wolf, Nuovo Cimento 13, 1165–1181 (1959).zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Tero Setälä
    • 1
  • Ferdinando Nunziata
    • 1
  • Ari T. Friberg
    • 1
  1. 1.Department of Applied PhysicsAalto UniversityAaltoFinland

Personalised recommendations