Deformation of Digital Holograms for Full Control of Focus and for Extending the Depth of Field

  • M. Paturzo
  • P. FerraroEmail author


We show here that through an adaptive deformation of a digital hologram, it is possible to manage the depth of focus in 3D imaging reconstruction. For Fresnel holograms, a linear deformation is applied to the original hologram with the aim to change the reconstruction distance. On the other hand, by a quadratic deformation of spatial coordinates of a digital hologram acquired in Fourier configuration, it is possible to recover the extended focus image (EFI) of a tilted object.



This research is funded by the European Community’s Seventh Framework Program FP7/2007–2013 under grant agreement 216105.


  1. 1.
    Perry, D. J., Venkatachalam, V., Liang, L., Hall, B. E., Frost, K., Basiji, D.A.: Extended depth of field imaging for high speed cell analysis. Cytometry A 71A, 215–231 (2007)CrossRefGoogle Scholar
  2. 2.
    Dowski, E. R. Jr., Cathey, W.T.: Extended depth of field through wavefront coding. Appl. Opt. 34, 1859–1866 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    Zalevsky, Z., Ben-Yaish, S.: Extended depth of focus imaging with birefringent plate. Opt. Express 15, 7202–7210 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Mikula, G., Jaroszewicz, Z., Kolodziejczyk, A., Petelczyc, K., Sypek, M.: Imaging with extended focal depth by means of lenses with radial and angular modulation. Opt. Express 15, 9184–9193 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Zhao, H., Li, Q., Feng, H.: Improved logarithmic phase mask to extend the depth of field of an incoherent imaging system. Opt. Lett. 33, 1171–1173 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Bagheri, S., Javidi, B.: Extension of depth of field using amplitude and phase modulation of the pupil function. Opt. Lett. 33, 757–759 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Kanka, M., Riesenberg, R., Kreuzer, H. J.: Reconstruction of high-resolution holographic microscopic images. Opt. Lett. 34, 1162–1164 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Wang, D., Zhao, J., Zhang, F., Pedrini, G., Osten, W.: High-fidelity numerical realization of multiple-step Fresnel propagation for the reconstruction of digital holograms. Appl. Opt. 47, D12–D20 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Seok Hwang, Y., Hong, S.-H., Javidi, B.: Free view 3-D visualization of occluded objects by using computational synthetic aperture integral imaging. J. Display Technol. 3, 64–70 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Takaki, Y., Ohzu, H.: Hybrid holographic microscopy: visualization of three-dimensional object information by use of viewing angles. Appl. Opt. 39, 5302–5308 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Malkiel, E., Abras, J. N., Katz, J.: Automated scanning and measurements of particle distributions within a holographic reconstructed volume. Meas. Sci. Technol.15, 601–612 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Ferraro, P., Coppola, G., De Nicola, S., Finizio, A., Pierattini, G.: Digital holographic microscope with automatic focus tracking by detecting sample displacement in real time. Opt. Lett. 28, 1257–1259 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Antkowiak, M., Callens, N., Yourassowsky, C., Dubois, F.: Extended focused imaging of a microparticle field with digital holographic microscopy. Opt. Lett. 33, 1626–1628 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Dubois, F., Schockaert, C., Callens, N., Yourassowsky, C.: Focus plane detection criteria in digital holography microscopy by amplitude analysis. Opt. Express 14, 5895–5908 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Liebling, M., Unser, M.: Autofocus for digital Fresnel holograms by use of a Fresnelet sparsity criterion. J. Opt. Soc. Am. A 21, 2424–2430 (2004)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Pieper, R. J., Korpel, A.: Image processing for extended depth of field. Appl. Opt. 22, 1449–1453 (1983)ADSCrossRefGoogle Scholar
  17. 17.
    Ferraro, P., Grilli, S., Alfieri, D., De Nicola, S., Finizio, A., Pierattini, G., Javidi, B., Coppola, G., Striano, V.: Extended focused image in microscopy by digital holography. Opt. Express 13, 6738–6749 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    De Nicola, S., Finizio, A., Pierattini, G., Ferraro, P., Alfieri, D.: Angular spectrum method with correction of anamorphism for numerical reconstruction of digital holograms on tilted planes. Opt. Express 13, 9935–9940 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Jeong, S. J., Hong, C. K.: Pixel-size-maintained image reconstruction of digital holograms on arbitrarily tilted planes by the angular spectrum method. Appl. Opt. 47, 3064–3071 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Matsushima, K.: Formulation of the rotational transformation of wave fields and their application to digital holography. Appl. Opt. 47, D110–D116 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    McElhinney, C. P., Hennelly, B. M., Naughton, T. J.: Extended focused imaging for digital holograms of macroscopic three-dimensional objects. Appl. Opt. 47, D71–D79 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Leseberg, D., Frère, C.: Computer-generated holograms of 3-D objects composed of tilted planar segments. Appl. Opt. 27, 3020–3024 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    Ferraro, P., Paturzo, M., Memmolo, P., Finizio, A.: Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms. Opt. Lett. 34, 2787–2789 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Paturzo, M., Ferraro, P.: Creating an extended focus image of a tilted object in Fourier digital holography. Opt. Express 17, 20546–20552 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.CNR – Istituto Nazionale di OtticaPozzuoliItaly

Personalised recommendations