Advertisement

Improvement of Viewing-Zone Angle and Image Quality of Digital Holograms

  • Takanori Nomura
  • Yusuke Teranishi
  • Eiji Nitanai
  • Takuhisa Numata
Chapter

Abstract

A method to improve the viewing-zone angle and the image quality of a digital hologram is presented. A number of digital holograms of a central object are recorded from the position on the circumference. The holograms are used for a hologram synthesis to improve the image quality from whole viewing-zone angle. The synthesis is achieved by a correlation between a hologram and numerically propagated holograms. The large-sized synthesized digital hologram has a wide viewing-zone angle and less speckles. Some experimental results are shown to confirm our proposed method.

Notes

Acknowledgement

This study was partly supported by a research granted form The Murata Science Foundation.

References

  1. 1.
    I. Yamaguchi and T Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).Google Scholar
  2. 2.
    W. Osten, T. Baumbach, and W. Jüptner, “Comparative digital holography,” Opt. Lett. 27, 1764–1766 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    T. Kreis, Handbook of Holographic Interferometry (Wiley-VCH, Weinheim, 2005).Google Scholar
  4. 4.
    Y. Frauel, T. Naughton, O. Matoba, E. Tahajuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE 94, 636–653 (2006).CrossRefGoogle Scholar
  5. 5.
    J. W. Goodman and R. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77–79 (1967).ADSCrossRefGoogle Scholar
  6. 6.
    J. Rosen, “Three-dimensional optical Fourier transform and correlation,” Opt. Lett. 22, 964–966 (1997).ADSCrossRefGoogle Scholar
  7. 7.
    P. Ferraro, S. Grilli, D. Alfieri, S. D. Nicola, A. Finizio, G. Pierattini, B. Javidi, G. Coppola, and V. Striano, “Extended focused image in microscopy by digital Holography,” Opt. Exp. 13, 6738–6749 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183–D189 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595–6601 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    S. Tamano, Y. Hayasaki, and N. Nishida, “Phase-shifting digital holography with a low-coherence light source for reconstruction of a digital relief object hidden behind a light-scattering medium,” Appl. Opt. 45, 953–959 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    T. Nomura, B. Javidi, S. Murata, E. Nitanai, and T. Numata, “Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography,” Opt. Lett. 32, 481–483 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    M. Yokota, “Polarization analysis by off-axis digital holography with an improved optical system and an evaluation of its performance by simulation,” Appl. Opt. 47, 6325–6333 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    T.-C. Poon and T. Kim, “Optical image recognition of three-dimensional objects,” Appl. Opt. 38, 370–381 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    E. Tajahuerce, O. Matoba, and B. Javidi, “Shift-invariant three-dimensional object recognition by means of digital holography,” Appl. Opt. 40, 3877–3888 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    B. Javidi and D. Kim, “Multiple object recognition by digital holography with a wavelength-tuned laser diode,” Opt. Lett. 30, 236–238 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    Y. Ishii and T. Takahashi, “Three-dimensional-object recognition by use of single-exposure on-axis digital holography,” Proc. SPIE 6252, 62521M (2006).CrossRefGoogle Scholar
  17. 17.
    T. Nomura and B. Javidi, “Object recognition by use of polarimetric phase-shifting digital holography,” Opt. Lett. 32 2146–2148 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    R. Binet, J. Colineau, and J.-C. Lehureau, “Short-range synthetic aperture imaging at 633 nm by digital holography,” Appl. Opt. 41, 4775–4782 (2002).ADSCrossRefGoogle Scholar
  19. 19.
    T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt. 47, D38–D43 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    T. Nakatsuji and K. Matsushima, “Free-viewpoint images captured using phase-shifting synthetic aperture digital holography,” Appl. Opt. 47, D136–D143 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    B. M. Hennelly, C. Mc Elhinney, Y. Frauel, T. J. Naughton, J. B. McDonald, and B. Javidi, “Superposition of digital holograms,” AIP Conf. Proc. 860, 281–289 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Takanori Nomura
    • 1
  • Yusuke Teranishi
  • Eiji Nitanai
  • Takuhisa Numata
  1. 1.Faculty of Systems EngineeringWakayama UnivesityWakayamaJapan

Personalised recommendations