Oligonucleotide Therapeutics

Part of the Cancer Drug Discovery and Development book series (CDD&D)


The idea of sequence-specific gene silencing by synthetic oligonucleotides targeting mRNA is at least 40 years old, but it was only in the mid-1980s when technical advances made the chemical synthesis of oligonucleotides possible that practical steps could be taken toward its implementation. The result was a deluge of experimental data in a variety of systems [1], most of which employed the phosphorothioate (PS) backbone modification, and much of which was ultimately, and unfortunately, uninterpretable.


Chronic Lymphocytic Leukemia Respiratory Syncytial Virus Acute Myelogenous Leukemia Advanced Melanoma Severe Acute Respiratory Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Stein CA, Cheng YC: Antisense oligonucleotides as therapeutic agents: is the bullet really magical? Science 261:1004–1012, 1993PubMedCrossRefGoogle Scholar
  2. 2.
    Stec WJ, Zon G, Egan W, et al: Automated solid-phase synthesis, separation and stereochemistry of phosphorothioate analogs of oligodeoxyribonucleotides. J Am Chem Soc 106:6077–6079, 1984CrossRefGoogle Scholar
  3. 3.
    Eder PS, DeVine RJ, Dagle JM, et al: Substrate specificity and kinetics of degradation of ­antisense oligonucleotides by a 3′ exonuclease in plasma. Antisense Res Dev 1:141–151, 1991PubMedGoogle Scholar
  4. 4.
    Stein CA, Subasinghe C, Shinozuka K, et al: Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 16:3209–3221, 1988PubMedCrossRefGoogle Scholar
  5. 5.
    Watanabe TA, Geary RS, Levin AA: Plasma protein binding of an antisense oligonucleotide targeting human ICAM-1 (ISIS 2302). Oligonucleotides 16:169–180, 2006PubMedCrossRefGoogle Scholar
  6. 6.
    Geary RS, Watanabe TA, Truong L, et al: Pharmacokinetic properties of 2′-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. J Pharmacol Exp Ther 296:890–897, 2001PubMedGoogle Scholar
  7. 7.
    Geary RS, Yu RZ, Watanabe T, et al: Pharmacokinetics of a tumor necrosis factor-alpha phosphorothioate 2′-O-(2-methoxyethyl) modified antisense oligonucleotide: comparison across species. Drug Metab Dispos 31:1419–1428, 2003PubMedCrossRefGoogle Scholar
  8. 8.
    Walder RY, Walder JA: Role of RNase H in hybrid-arrested translation by antisense oligonucleotides. Proc Natl Acad Sci USA 85:5011–5015, 1988PubMedCrossRefGoogle Scholar
  9. 9.
    Stein CA, Hansen B, Lai J, et al: Efficient gene silencing by delivery of locked nucleic acid antisence oligonucleotides, unassisted by transfection reagents. Nucl. Acids Res. 2009, doi:  10,1093/nar/gkp841
  10. 10.
    Koshkin AA, Singh SK, Nielsen P, et al: LNA (locked nucleic acids): synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation and unprecedented nucleic acid recognition. Tetrahedron 54:3607–3630, 1998CrossRefGoogle Scholar
  11. 11.
    Singh SK, Nielsen P, Koshkin AA, et al: LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chem Commun (Camb) 4:455–456, 1998CrossRefGoogle Scholar
  12. 12.
    Grünweller A, Wyszko E, Bieber B, et al: Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 31:3185–3193, 2003PubMedCrossRefGoogle Scholar
  13. 13.
    Fluiter K, Frieden M, Vreijling J, et al: On the in vitro and in vivo properties of four locked nucleic acid nucleotides incorporated into an anti-H-Ras antisense oligonucleotide. Chembiochem 6:1104–1109, 2005PubMedCrossRefGoogle Scholar
  14. 14.
    Elayadi AN, Braasch DA, Corey DR: Implications of high-affinity hybridization by locked nucleic acid oligomers for inhibition of human telomerase. Biochemistry 41:9973–9981, 2002PubMedCrossRefGoogle Scholar
  15. 15.
    Braasch DA, Liu Y, Corey DR: Antisense inhibition of gene expression in cells by oligonucleotides incorporating locked nucleic acids: effect of mRNA target sequence and chimera design. Nucleic Acids Res 30:5160–5167, 2002PubMedCrossRefGoogle Scholar
  16. 16.
    Monteith DK, Henry SP, Howard RB, et al: Immune stimulation – a class effect of phosphorothioate oligodeoxynucleotides in rodents. Anticancer Drug Des 12:421–432, 1997PubMedGoogle Scholar
  17. 17.
    Gekeler V, Gimmnich P, Hofmann HP, et al: G3139 and other CpG-containing immunostimulatory phosphorothioate oligodeoxynucleotides are potent suppressors of the growth of human tumor xenografts in nude mice. Oligonucleotides 16:83–93, 2006PubMedCrossRefGoogle Scholar
  18. 18.
    Klasa RJ, Gillum AM, Klem RE, et al: Oblimersen Bcl-2 antisense: facilitating apoptosis in anticancer treatment. Antisense Nucleic Acid Drug Dev 12:193–213, 2002PubMedCrossRefGoogle Scholar
  19. 19.
    Kitada S, Takayama S, De Riel K, et al: Reversal of chemoresistance of lymphoma cells by antisense-mediated reduction of bcl-2 gene expression. Antisense Res Dev 4:71–79, 1994PubMedGoogle Scholar
  20. 20.
    Gjertsen BT, Bredholt T, Anensen N, et al: Bcl-2 antisense in the treatment of human malignancies: a delusion in targeted therapy. Curr Pharm Biotechnol 8:373–381, 2007PubMedCrossRefGoogle Scholar
  21. 21.
    Webb A, Cunningham D, Cotter F, et al: BCL-2 antisense therapy in patients with non-Hodgkin lymphoma. Lancet 349:1137–1141, 1997PubMedCrossRefGoogle Scholar
  22. 22.
    Waters JS, Webb A, Cunningham D, et al: Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin’s lymphoma. J Clin Oncol 18:1812–1823, 2000PubMedGoogle Scholar
  23. 23.
    O’Brien S, Moore JO, Boyd TE, et al: Randomized phase III trial of fludarabine plus cyclophosphamide with or without oblimersen sodium (Bcl-2 antisense) in patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol 25:1114–1120, 2007PubMedCrossRefGoogle Scholar
  24. 24.
    O’Brien S, Moore JO, Boyd TE, et al: 5-year survival in patients with relapsed or refractory CLL in randomized Phase III trial of fludarabine plus cyclophosphamide with or without oblimersen: the Oblimersen CLL Study Group. J. Clin. Oncol. 27:5208–5212, 2009Google Scholar
  25. 25.
    Rai KR, Moore J, Wu J, et al: Effect of the addition of oblimersen (Bcl-2 antisense) to fludarabine/cyclophosphamide for relapsed/refractory chronic lymphocytic leukemia (CLL) on survival in patients who achieve CR/nPR: five-year follow-up from a randomized phase III study. J Clin Oncol 26:374s, 2008 (suppl; abstr 7008)CrossRefGoogle Scholar
  26. 26.
    Weiss LM, Warnke RA, Sklar J, et al: Molecular analysis of the t(14;18) chromosomal translocation in malignant lymphomas. N Engl J Med 317:1185–1189, 1987PubMedCrossRefGoogle Scholar
  27. 27.
    Reed JC, Kitada S, Takayama S, et al: Regulation of chemoresistance by the bcl-2 oncoprotein in non-Hodgkin’s lymphoma and lymphocytic leukemia cell lines. Ann Oncol 5:61–65, 1994PubMedCrossRefGoogle Scholar
  28. 28.
    Schmitt CA, Rosenthal CT, Lowe SW: Genetic analysis of chemoresistance in primary murine lymphomas. Nat Med 6:1029–1035, 2000PubMedCrossRefGoogle Scholar
  29. 29.
    Gazitt Y, Hu WX: Fas (APO-1/CD95)-mediated apoptosis is independent of bcl-2: a study with cell lines overexpressing bcl-2 and with bcl-2 transfected cell lines. Int J Oncol 12:211–220, 1998PubMedGoogle Scholar
  30. 30.
    Gleave ME, Miayake H, Goldie J, et al: Targeting bcl-2 gene to delay androgen-independent progression and enhance chemosensitivity in prostate cancer using antisense bcl-2 oligodeoxynucleotides. Urology 54:36–46, 1999PubMedCrossRefGoogle Scholar
  31. 31.
    Blagosklonny MV: Paradox of Bcl-2 (and p53): why may apoptosis-regulating proteins be irrelevant to cell death? Bioessays 23:947–953, 2001PubMedCrossRefGoogle Scholar
  32. 32.
    Soengas MS, Capodieci P, Polsky D, et al: Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409:207–211, 2001PubMedCrossRefGoogle Scholar
  33. 33.
    Bush JA, Li G: The role of Bcl-2 family members in the progression of cutaneous melanoma. Clin Exp Metastasis 20:531–539, 2003PubMedCrossRefGoogle Scholar
  34. 34.
    Leiter U, Schmid RM, Kaskel P, et al: Antiapoptotic bcl-2 and bcl-xL in advanced malignant melanoma. Arch Dermatol Res 292:225–232, 2000PubMedCrossRefGoogle Scholar
  35. 35.
    Tang L, Tron VA, Reed JC, et al: Expression of apoptosis regulators in cutaneous malignant melanoma. Clin Cancer Res 4:1865–1871, 1998PubMedGoogle Scholar
  36. 36.
    Ramsay JA, From L, Kahn HJ: bcl-2 protein expression in melanocytic neoplasms of the skin. Mod Pathol 8:150–154, 1995PubMedGoogle Scholar
  37. 37.
    Saenz-Santamaria MC, Reed JA, et al: Immunohistochemical expression of BCL-2 in melanomas and intradermal nevi. J Cutan Pathol 21:393–397, 1994PubMedCrossRefGoogle Scholar
  38. 38.
    Tron VA, Krajewski S, Klein-Parker H, et al: Immunohistochemical analysis of Bcl-2 protein regulation in cutaneous melanoma. Am J Pathol 146:643–650, 1995PubMedGoogle Scholar
  39. 39.
    Plettenberg A, Ballaun C, Pammer J, et al: Human melanocytes and melanoma cells constitutively express the Bcl-2 proto-oncogene in situ and in cell culture. Am J Pathol 146:651–659, 1995PubMedGoogle Scholar
  40. 40.
    Cerroni L, Soyer HP, Kerl H: bcl-2 protein expression in cutaneous malignant melanoma and benign melanocytic nevi. Am J Dermatopathol 17:7–11, 1995PubMedCrossRefGoogle Scholar
  41. 41.
    Jansen B, Wacheck V, Heere-Ress E, et al: Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 356:1728–1733, 2000PubMedCrossRefGoogle Scholar
  42. 42.
    Bedikian AY, Millward M, Pehamberger H, et al: Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J Clin Oncol 24:4738–4745, 2006PubMedCrossRefGoogle Scholar
  43. 43.
    Manola J, Atkins M, Ibrahim J, et al: Prognostic factors in metastatic melanoma: a pooled analysis of Eastern Cooperative Oncology Group trials. J Clin Oncol 18:3782–3793, 2000PubMedGoogle Scholar
  44. 44.
    Agarwala S, Gilles E, Wu J, et al: LDH correlation with survival in advanced melanoma from two large, randomized trials: Oblimersen (GM 301) and EORTC 18951. Eur. J. Cancer 45:1807–1814, 2009Google Scholar
  45. 45.
    Cairns RA, Kalliomaki T, Hill RP: Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res 61:8903–8908, 2001PubMedGoogle Scholar
  46. 46.
    Postovit LM, Adams MA, Lash GE, et al: Oxygen-mediated regulation of tumor cell invasiveness. Involvement of a nitric oxide signaling pathway. J Biol Chem 277:35730–35737, 2002PubMedCrossRefGoogle Scholar
  47. 47.
    Rofstad EK, Rasmussen H, Galappathi K, et al: Hypoxia promotes lymph node metastasis in human melanoma xenografts by up-regulating the urokinase-type plasminogen activator receptor. Cancer Res 62:1847–1853, 2002PubMedGoogle Scholar
  48. 48.
    Bottaro DP, Liotta LA: Out of air is not out of action. Nature 423:593–595, 2003PubMedCrossRefGoogle Scholar
  49. 49.
    Pennacchietti S, Michieli P, Galluzzo M, et al: Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3:347–361, 2003PubMedCrossRefGoogle Scholar
  50. 50.
    Höckel M, Vaupel P: Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266–276, 2001PubMedCrossRefGoogle Scholar
  51. 51.
    Avril MF, Aamdal S, Grob JJ, et al: Fotemustine compared with dacarbazine in patients with disseminated malignant melanoma: a phase III study. J Clin Oncol 22:1118–1125, 2004PubMedCrossRefGoogle Scholar
  52. 52.
    Chapman PB, Einhorn LH, Meyers ML, et al: Phase III multicenter randomized trial of the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma. J Clin Oncol 17:2745–2751, 1999PubMedGoogle Scholar
  53. 53.
    Eton O, Legha SS, Bedikian AY, et al: Sequential biochemotherapy versus chemotherapy for metastatic melanoma: results from a phase III randomized trial. J Clin Oncol 20:2045–2052, 2002PubMedCrossRefGoogle Scholar
  54. 54.
    Rudin CM, Salgia R, Wang X, et al: Randomized phase II study of carboplatin and etoposide with or without the bcl-2 antisense oligonucleotide oblimersen for extensive-stage small-cell lung cancer: CALGB 30103. J Clin Oncol 26:870–876, 2008PubMedCrossRefGoogle Scholar
  55. 55.
    Marcucci G, Stock W, Dai G, et al: Phase I study of oblimersen sodium, an antisense to Bcl-2, in untreated older patients with acute myeloid leukemia: pharmacokinetics, pharmacodynamics, and clinical activity. J Clin Oncol 23:3404–3411, 2005PubMedCrossRefGoogle Scholar
  56. 56.
    Banker DE, Radich J, Becker A, et al: The t(8;21) translocation is not consistently associated with high Bcl-2 expression in de novo acute myeloid leukemias of adults. Clin Cancer Res 4:3051–3062, 1998PubMedGoogle Scholar
  57. 57.
    Moore J, Seiter K, Kolitz J, et al: A phase II study of Bcl-2 antisense (oblimersen sodium) combined with gemtuzumab ozogamicin in older patients with acute myeloid leukemia in first relapse. Leuk Res 30:777–783, 2006PubMedCrossRefGoogle Scholar
  58. 58.
    Larson RA, Boogaerts M, Estey E, et al: Antibody-targeted chemotherapy of older patients with acute myeloid leukemia in first relapse using Mylotarg (gemtuzumab ozogamicin). Leukemia 16:1627–1636, 2002PubMedCrossRefGoogle Scholar
  59. 59.
    Marcucci G, Moser B, Blum W, et al: A phase III randomized trial of intensive induction and consolidation chemotherapy  ±  antisense oligonucleotide in untreated acute myeloid leukemia patients >60 years old. J Clin Oncol 25:360s, 2007 (suppl; abstr 7012)CrossRefGoogle Scholar
  60. 60.
    Badros AZ, Goloubeva O, Rapoport AP, et al: Phase II study of G3139, a Bcl-2 antisense oligonucleotide, in combination with dexamethasone and thalidomide in relapsed multiple myeloma patients. J Clin Oncol 23:4089–4099, 2005PubMedCrossRefGoogle Scholar
  61. 61.
    Chanan-Chan AA, Niesvizky R, Hohl RJ, et al: Randomized multicenter phase 3 trial of high-dose dexamethasone (dex) with or without oblimersen sodium (G3139; Bcl-2 antisense; Genasense) for patients with advanced multiple myeloma (MM). Blood 104:413a, 2004 (abstr 1477)Google Scholar
  62. 62.
    Data on file. Genta Incorporated. Berkeley Heights, NJGoogle Scholar
  63. 63.
    Chi K, Siu L, Hirte H, et al: A phase I study of OGX-011, a 2′-methoxyethyl phosphorothioate antisense to clusterin, in combination with docetaxel in patients with advanced cancer. Clin Cancer Res 14:833–839, 2007CrossRefGoogle Scholar
  64. 64.
    Chi K, Hotte S, Yu E, et al: A randomized phase II study of OGX-011 in combination with docetaxel and prednisone or docetaxel and prednisone alone in patients with metastatic hormone refractory prostate cancer (HRPC). J Clin Oncol 25:252s, 2007 (suppl; abstr 5069)CrossRefGoogle Scholar
  65. 65.
    Hau P, Jachimczak P, Schlingensiepen R, et al: Inhibition of TGF-β2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides 17:201–212, 2007PubMedCrossRefGoogle Scholar
  66. 66.
    Schlingensiepen KH, Fischer-Blass B, Schmaus S, et al: Antisense therapeutics for tumor treatment: the TGF-beta2 inhibitor AP 12009 in clinical development against malignant tumors. Recent Results Cancer Res 177:137–150, 2008PubMedCrossRefGoogle Scholar
  67. 67.
    Bogdahn U, Oliushine VE, Parfenov VE, et al: Results of G004, a phase IIb study in recurrent glioblastoma patients with the TGF-β2 targeted compound AP 12009. J Clin Oncol 24:71s, 2006 (suppl; abstr 1553)Google Scholar
  68. 68.
    Nemunaitis J, Holmlund JT, Kraynak M, et al: Phase I evaluation of ISIS 3521, an antisense oligodeoxynucleotide to protein kinase C-alpha, in patients with advanced cancer. J Clin Oncol 17:3586–3595, 1999PubMedGoogle Scholar
  69. 69.
    Yuen AR, Halsey J, Fisher GA, et al: Phase I study of an antisense oligonucleotide to ­protein kinase C-alpha (ISIS 3521/CGP 64128A) in patients with cancer. Clin Cancer Res 5:3357–3363, 1999PubMedGoogle Scholar
  70. 70.
    Cripps MC, Figueredo AT, Oza AM, et al: Phase II randomized study of ISIS 3521 and ISIS 5132 in patients with locally advanced or metastatic colorectal cancer: a National Cancer Institute of Canada clinical trials group study. Clin Cancer Res 8:2188–2192, 2002PubMedGoogle Scholar
  71. 71.
    Tolcher AW, Reyno L, Venner PM, et al: A randomized phase II and pharmacokinetic study of the antisense oligonucleotides ISIS 3521 and ISIS 5132 in patients with hormone-refractory prostate cancer. Clin Cancer Res 8:2530–2535, 2002PubMedGoogle Scholar
  72. 72.
    Villalona-Calero MA, Ritch P, Figueroa JA, et al: A phase I/II study of LY900003, an antisense inhibitor of protein kinase C-α, in combination with cisplatin and gemcitabine in patients with advanced non-small cell lung cancer. Clin Cancer Res 10:6086–6093, 2004PubMedCrossRefGoogle Scholar
  73. 73.
    Fire A, Xu S, Montgomery MK, et al: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811, 1998PubMedCrossRefGoogle Scholar
  74. 74.
    Rana TM: Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8:23–36, 2007PubMedCrossRefGoogle Scholar
  75. 75.
    Elbashir SM, Harborth J, Lendeckel W, et al: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498, 2001PubMedCrossRefGoogle Scholar
  76. 76.
    Rose SD, Kim DH, Amarzguioui M, et al: Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res 33:4140–4156, 2005PubMedCrossRefGoogle Scholar
  77. 77.
    Kim DH, Behlke MA, Rose SD, et al: Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23:222–226, 2005PubMedCrossRefGoogle Scholar
  78. 78.
    Siolas D, Lerner C, Burchard J, et al: Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol 23:227–231, 2005PubMedCrossRefGoogle Scholar
  79. 79.
    Corey DR: Chemical modification: the key to clinical application of RNA interference? J Clin Invest 117:3615–3622, 2007PubMedCrossRefGoogle Scholar
  80. 80.
    Prakash TP, Allerson CR, Dande P, et al: Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J Med Chem 48:4247–4253, 2005PubMedCrossRefGoogle Scholar
  81. 81.
    Fedorov Y, Anderson EM, Birmingham A, et al: Off-target effects by siRNA can induce toxic phenotype. RNA 12:1188–1196, 2006PubMedCrossRefGoogle Scholar
  82. 82.
    Morrissey DV, Lockridge JA, Shaw L, et al: Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol 23:1002–1007, 2005PubMedCrossRefGoogle Scholar
  83. 83.
    Chiu YL, Rana TM: siRNA function in RNAi: a chemical modification analysis. RNA 9:1034–1048, 2003PubMedCrossRefGoogle Scholar
  84. 84.
    Chen PY, Weinmann L, Gaidatzis D, et al: Strand-specific 5′-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. RNA 14:263–274, 2008PubMedCrossRefGoogle Scholar
  85. 85.
    Kubo T, Zhelev Z, Ohba H, et al: Modified 27-nt dsRNAs with dramatically enhanced stability in serum and long-term RNAi activity. Oligonucleotides 17:445–464, 2007PubMedCrossRefGoogle Scholar
  86. 86.
    Gaynor JW, Brazier J, Cosstick R: Synthesis of 3′-S-phosphorothiolate oligonucleotides for their potential use in RNA interference. Nucleosides Nucleotides Nucleic Acids 26:709–712, 2007PubMedCrossRefGoogle Scholar
  87. 87.
    Hall AH, Wan J, Shaughnessy EE, et al: RNA interference using boranophosphate siRNAs: structure-activity relationships. Nucleic Acids Res 32:5991–6000, 2004PubMedCrossRefGoogle Scholar
  88. 88.
    Hoshika S, Minakawa N, Matsuda A: RNA interference induced by siRNAs modified with 4′-thioribonucleosides. Nucleic Acids Symp Ser (Oxf) 49:77–78, 2005CrossRefGoogle Scholar
  89. 89.
    Mook OR, Baas F, de Wissel MB, et al: Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther 6:833–843, 2007PubMedCrossRefGoogle Scholar
  90. 90.
    Elmén J, Thonberg H, Ljungberg K, et al: Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 33:439–447, 2005PubMedCrossRefGoogle Scholar
  91. 91.
    de Fougerolles A, Vornlocher HP, Maraganore J, et al: Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6:443–453, 2007PubMedCrossRefGoogle Scholar
  92. 92.
    Behlke MA: Progress towards in vivo use of siRNAs. Mol Ther 13:644–670, 2006PubMedCrossRefGoogle Scholar
  93. 93.
    Kim DH, Rossi JJ: Strategies for silencing human disease using RNA interference. Nat Rev Genet 8:173–184, 2007PubMedCrossRefGoogle Scholar
  94. 94.
    Bitko V, Musiyenko A, Shulyayeva O, et al: Inhibition of respiratory viruses by nasally administered siRNA. Nat Med 11:50–55, 2005PubMedCrossRefGoogle Scholar
  95. 95.
    Li BJ, Tang Q, Cheng D, et al: Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med 11:944–951, 2005PubMedGoogle Scholar
  96. 96.
    Palliser D, Chowdhury D, Wang QY, et al: An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 439:89–94, 2006PubMedCrossRefGoogle Scholar
  97. 97.
    Jacque JM, Triques K, Stevenson M: Modulation of HIV-1 replication by RNA interference. Nature 418:435–438, 2002PubMedCrossRefGoogle Scholar
  98. 98.
    Coburn GA, Cullen BR: Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. J Virol 76:9225–9231, 2002PubMedCrossRefGoogle Scholar
  99. 99.
    Rossi JJ, June CH, Kohn DB: Genetic therapies against HIV. Nat Biotechnol 25:1444–1454, 2007PubMedCrossRefGoogle Scholar
  100. 100.
    Kleinman ME, Yamada K, Takeda A, et al: Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452:591–597, 2008PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Oncology, Albert Einstein-Montefiore Cancer CenterMontefiore Medical CenterBronxUSA

Personalised recommendations