Computational Analyses of Airway Flow and Lung Tissue Dynamics

  • David W. Kaczka
  • Ashley A. Colletti
  • Merryn H. Tawhai
  • Brett A. Simon
Chapter

Abstract

The function of the mammalian respiratory system is the facilitation the transfer of gas exchange between the organism’s environment and its internal transport medium, the blood. Evolutionary processes have optimized the anatomic structure of the lung as a tree-like branching network of airways terminating in thin-walled elastic ducts and alveoli, where this gas exchange occurs. Both dissipative and elastic properties of the respiratory system contribute to its unique static and dynamic mechanical behavior. In this chapter, we will explore the various structural and functional relationships of the respiratory system, and review several computational and modeling analyses that provide insight into the pathophysiology of common respiratory diseases. Particular emphasis is placed on studies that utilize imaging to help understand and/or validate the distributed regional nature of lung function.

Keywords

Surfactant Toxicity Dioxide Convection Helium 

Notes

Acknowledgments

Supported in part by National Heart, Lung, and Blood Institute Grants K08 HL-089227. The authors wish to thank Dr. Jason H.T. Bates for his many helpful suggestions.

References

  1. 1.
    Lumb AB (2005) Nunn’s applied respiratory physiology. Elsevier/Butterworth Heinemann, Philadelphia, PA, p 501Google Scholar
  2. 2.
    West JB (1990) Respiratory physiology – the essentials. Williams & Wilkins, Baltimore,MD, p 185Google Scholar
  3. 3.
    Weibel ER (1963) Morphometry of the human lung. Springer, Berlin, p 151Google Scholar
  4. 4.
    Barnas GM, Campbell DN, Mackenzie CF, Mendham JE, Fahy BG, Runcie CJ, Mendham GE (1992) Lung, chest wall, and total respiratory resistances and elastances in the normal range of breathing. Am Rev Respir Dis 145:110–113Google Scholar
  5. 5.
    Warner DO (2000) So you want to be a pulmonary mechanic? A clinical guide. J Clin Monit Comput 16:417–423CrossRefGoogle Scholar
  6. 6.
    Pedley TJ, Schroter RC, Sudlow MF (1970a) Energy losses and pressure drop in models of human airways. Respir Physiol 9:371–386CrossRefGoogle Scholar
  7. 7.
    Pedley TJ, Schroter RC, Sudlow MF (1970b) The prediction of pressure drop and variation of resistance within the human bronchial airways. Respir Physiol 9:387–405CrossRefGoogle Scholar
  8. 8.
    Schroter RC, Sudlow MF (1969) Flow patterns in models of the human bronchial airways. Respir Physiol 7:341–355CrossRefGoogle Scholar
  9. 9.
    Fredberg JJ, Bunk D, Ingenito E, Shore SA (1993) Tissue resistance and contractile state of lung parenchyma. J Appl Physiol 74:1387–1397Google Scholar
  10. 10.
    Fredberg JJ, Stamenovic D (1989) On the imperfect elasticity of lung tissue. J Appl Physiol 67:2048–2419Google Scholar
  11. 11.
    Kaczka DW, Ingenito EP, Suki B, Lutchen KR (1997) Partitioning airway and lung tissue resistances in humans: effects of bronchoconstriction. J Appl Phys 82:1531–1541Google Scholar
  12. 12.
    Sutera SP, Skalak R (1993) The history of Poiseuille’s law. Ann Rev Fluid Mech 25: 1–19MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kaczka DW, Brown RH, Mitzner W (2009) Assessment of heterogeneous airway constriction in dogs: a structure–function analysis. J Appl Physiol 106:520–530CrossRefGoogle Scholar
  14. 14.
    Kaczka DW, Massa CB, Simon BA (2007) Reliability of estimating stochastic lung tissue heterogeneity from pulmonary impedance spectra: a forward-inverse modeling study. Ann Biomed Eng 35:1722–1738CrossRefGoogle Scholar
  15. 15.
    Thurston GB (1952) Periodic fluid flow through circular tubes. J Acoust Soc Am 24:653–656MathSciNetCrossRefGoogle Scholar
  16. 16.
    Womersley JR (1955a) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127:553–563Google Scholar
  17. 17.
    Womersley JR (1955b) Oscillatory motion of a viscous liquid in a thin-walled elastic tube: I. The linear approximation for long waves. Philos Mag 46:199–221MATHMathSciNetGoogle Scholar
  18. 18.
    Finucane KE, Dawson SV, Phelan PD, Mead J (1975) Resistance of intrathoracic airways of healthy subjects during periodic flow. J Appl Physiol 38:517–530Google Scholar
  19. 19.
    Barnas GM, Stamenovic D, Fredberg JJ (1991) Proportionality between chest wall resistance and elastance. J Appl Physiol 70:511–515CrossRefGoogle Scholar
  20. 20.
    Suki B, Barabasi, A-L, Lutchen KR (1994) Lung tissue viscoelasticity: a mathematical framework and its molecular basis. J Appl Physiol 76:2749–2759Google Scholar
  21. 21.
    Mead J, Whittenberger JL, Radford EP Jr (1957) Surface tension as a factor in pulmonary hysteresis. J Appl Physiol 10:191–196Google Scholar
  22. 22.
    Fredberg JJ, Jones KA, Nathan M, Raboudi S, Prakash YS, Shore SA, Butler JP, Sieck GC (1996) Friction in airway smooth muscle: mechanism, latch, and implications in asthma. J Appl Physiol 81:2703–2712Google Scholar
  23. 23.
    Kapanci Y, Assimacopoulos A, Irle C, Zwahlen A, Gabbiani G (1974) Contractile interstitial cells in pulmonary alveolar septa: a possible regulator of ventilation/perfusion ratio? J Cell Biol 60:375–392CrossRefGoogle Scholar
  24. 24.
    Petak F, Hantos Z, Adamicza A, Daroczy B (1993) Partitioning of pulmonary impedance: modeling vs. alveolar capsule approach. J Appl Physiol 75:513–521Google Scholar
  25. 25.
    Barnas GM, Sprung J, Kahn R, Delaney PA, Agarwal M (1995) Lung tissue and airway impedance during pulmonary edema in the normal range of breathing. J Appl Physiol 78:1889–1897Google Scholar
  26. 26.
    Ludwig MS, Dreshaj I, Solway J, Munoz A, Ingram RH Jr (1987) Partitioning of pulmonary resistance during constriction in the dog: effects of volume history. J Appl Physiol 62: 807–815Google Scholar
  27. 27.
    Ludwig MS, Robatto FM, Simard S, Stamenovic D, Fredberg JJ (1992) Lung tissue resistance during contractile stimulation: structural damping decomposition. J Appl Physiol 72:1332–1337Google Scholar
  28. 28.
    Ludwig MS, Shore SA, Fredberg JJ, Drazen JM (1988) Differential response of tissue viscance and collateral resistance to histamine and leukotriene C4. J Appl Physiol 65:1424–1429Google Scholar
  29. 29.
    Kaczka DW, Ingenito EP, Israel E, Lutchen KR (1999) Airway and lung tissue mechanics in asthma: effects of albuterol. Am J Respir Crit Care Med 159:169–178Google Scholar
  30. 30.
    Petak F, Babik B, Asztalos T, Hall GL, Deak ZI, Sly PD, Hantos Z (2003) Airway and tissue mechanics in anesthetized paralyzed children. Pediatr Pulmonol 35:169–176CrossRefGoogle Scholar
  31. 31.
    Tepper R, Sato J, Suki B, Martin JG, Bates JHT (1992) Low-frequency pulmonary impedance in rabbits and its response to inhaled methacholine. J Appl Physiol 73:290–295Google Scholar
  32. 32.
    Hoppin FG Jr, Strothert JC Jr, Greaves IA, Lai, Y-L, Hildebrandt J (1986) Lung recoil: elastic and rheological properties. In: Macklem PT, Mead J (eds) Handbook of physiology. American Physiological Society, Bethesda, MD, pp 195–215Google Scholar
  33. 33.
    Agostoni E, Hyatt RE (1986) Static behavior of the respiratory system. In: Macklem PT, Mead J (eds) Handbook of physiology. American Physiological Society, Bethesda, MD, pp 113–130Google Scholar
  34. 34.
    Mead J (1961) Mechanical properties of lungs. Physiol Rev 41:281–330Google Scholar
  35. 35.
    Hildebrandt J (1969) Dynamic properties of air-filled excised cat lung determined by liquid plethysmograph. J Appl Physiol 27:246–250Google Scholar
  36. 36.
    Hildebrandt J (1970) Pressure–volume data of the cat determined by a plastoelastic, linear viscoelastic model. J Appl Physiol 28:365–372Google Scholar
  37. 37.
    Venegas JG, Harris RS, Simon BA (1998) A comprehensive equation for pulmonary pressure–volume curve. J Appl Physiol 84:389–395Google Scholar
  38. 38.
    Hager DN, Fuld M, Kaczka DW, Fessler HE, Brower RG, Simon BA (2006) Four methods of measuring tidal volume during high-frequency oscillatory ventilation. Crit Care Med 34:751–757CrossRefGoogle Scholar
  39. 39.
    Mead J (1956) Measurement of inertia of the lungs at increased ambient pressure. J Appl Physiol 9:208–212Google Scholar
  40. 40.
    Hopkins SR, Henderson AC, Levin DL, Yamada K, Arai T, Buxton RB, Prisk GK (2007) Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect. J Appl Physiol 103:240–248CrossRefGoogle Scholar
  41. 41.
    Kaczka DW, Hager DN, Hawley ML, Simon BA (2005) Quantifying mechanical heterogeneity in canine acute lung injury: impact of mean airway pressure. Anesthesiology 103:306–317CrossRefGoogle Scholar
  42. 42.
    Fuld MK, Easely RB, Saba OI, Chon D, Reinhardt JM, Hoffman EA, Simon BA (2008) CT-measured regional specific volume change reflects regional ventilation in supine sheep. J Appl Physiol 104:1177–1184CrossRefGoogle Scholar
  43. 43.
    Reinhardt JM, Ding K, Cao K, Christensen GE, Hoffman EA, Bodas SV (2008) Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation. Med Image Anal 12:752–763CrossRefGoogle Scholar
  44. 44.
    Rodarte JR, Rehder K. Dynamics of respiration. In: Macklem PT, Mead J (eds) Handbook of physiology. American Physiological Society, Bethesda, MD, pp 131–144Google Scholar
  45. 45.
    Amygdalou A, Psarakis C, Vassiliou P, Dalavanga YA, Mandragos C, Constantopoulos SH, Behrakis PK, Vassiliou MP (2002) Evaluation of the end-expiratory pressure by multiple linear regression and Fourier analysis in humans. Respir Med 96:499–505CrossRefGoogle Scholar
  46. 46.
    Kaczka DW, Barnas GM, Suki B, Lutchen KR (1995) Assessment of time-domain analyses for estimation of low-frequency respiratory mechanical properties and impedance spectra. Ann Biomed Eng 23:135–151CrossRefGoogle Scholar
  47. 47.
    Peslin R, de Silva JF, Chabot F, Duvivier C (1992) Respiratory mechanics studied by multiple linear regression in unsedated ventilated patients. Eur Respir J 5:871–878Google Scholar
  48. 48.
    Ruiz-Ferron F, Rucabado Aguilar L, Ruiz Navarro S, Ramirez Puerta R, Parra Alonso S, Munoz Munoz JL (2001) Results of respiratory mechanics analysis in the critically ill depend on the method employed. Intensive Care Med 27:1487–1495CrossRefGoogle Scholar
  49. 49.
    Bates JHT, Lutchen KR (2005) The interface between measurement and modeling of peripheral lung mechanics. Respir Physiol Neurobiol 148:153–164CrossRefGoogle Scholar
  50. 50.
    Kaczka DW, Ingenito EP, Body SC, Duffy SE, Mentzer SJ, DeCamp MM, Lutchen KR (2001) Inspiratory lung impedance in COPD: effects of PEEP and immediate impact of lung volume reduction surgery. J Appl Physiol 90:1833–1841Google Scholar
  51. 51.
    Lutchen KR, Greenstein JL, Suki B (1996) How inhomogeneities and airway walls affect frequency dependence and separation of airway and tissue properties. J Appl Physiol 80:1696–1707Google Scholar
  52. 52.
    Lutchen KR, Hantos Z, Petak F, Adamicza A, Suki B (1996) Airway inhomogeneities contribute to apparent lung tissue mechanics during constriction. J Appl Physiol 80: 1841–1849Google Scholar
  53. 53.
    Lutchen KR, Jensen A, Atileh H, Kaczka DW, Israel E, Suki B, Ingenito EP (2001) Airway constriction pattern is a central component of asthma severity: the role of deep inspirations. Am J Respir Crit Care Med 164:207–215Google Scholar
  54. 54.
    Lutchen KR, Suki B (1996) Understanding pulmonary mechanics using the forced oscillations technique. In: Khoo MCK (ed) Bioengineering approaches to pulmonary physiology and medicine. Plenum Press, New York, NY, pp 227–253CrossRefGoogle Scholar
  55. 55.
    Thorpe CW, Bates JHT (1997) Effect of stochastic heterogeneity on lung impedance during acute bronchoconstriction: a model analysis. J Appl Physiol 82:1616–1625Google Scholar
  56. 56.
    Lutchen KR, Gillis H (1997) Relationship between heterogeneous changes in airway morphometry and lung resistance and elastance. J Appl Physiol 83:1192–1201Google Scholar
  57. 57.
    Lutchen KR, Hantos Z, Jackson AC (1988) Importance of low-frequency impedance data for reliably quantifying parallel inhomogeneities of respiratory mechanics. IEEE Trans Biomed Eng 35:472–481CrossRefGoogle Scholar
  58. 58.
    Mead J (1969) Contribution of compliance of airways to frequency-dependent behavior of lungs. J Appl Physiol 26:670–673Google Scholar
  59. 59.
    Otis AB, McKerrow CB, Bartlett RA, Mead J, McIlroy MB, Selverstone NJ, Radford EP Jr (1956) Mechanical factors in the distribution of pulmonary ventilation. J Appl Physiol 8:427–443Google Scholar
  60. 60.
    Gillis HL, Lutchen KR (1999a) Airway remodeling in asthma amplifies heterogeneities in smooth muscle shortening causing hyperresponsiveness. J Appl Physiol 86:2001–2012CrossRefGoogle Scholar
  61. 61.
    Bellardine C, Ingenito EP, Hoffman A, Lopez F, Sanborn W, Suki B, Lutchen KR (2005) Heterogeneous airway versus tissue mechanics and their relation to gas exchange function during mechanical ventilation. Ann Biomed Eng 33:626–641CrossRefGoogle Scholar
  62. 62.
    Bates JHT (1991) Lung mechanics – the inverse problem. Aust Phys Eng Sci Med 14: 197–203Google Scholar
  63. 63.
    Daroczy B, Hantos Z (1982) An improved forced oscillatory estimation of respiratory impedance. Int J Biomed Comput 13:221–235CrossRefGoogle Scholar
  64. 64.
    Haase M, Schmalisch G, Meffert B (2007) Convergence properties of a new technique for estimating parameters in a nonlinear viscoelastic lung model in newborns. Comput Biol Med 37:1750–1758CrossRefGoogle Scholar
  65. 65.
    Hantos Z, Daroczy B, Suki B, Nagy S, Fredberg JJ (1992) Input impedance and peripheral inhomogeneity of dog lungs. J Appl Physiol 72:168–178CrossRefGoogle Scholar
  66. 66.
    Bates JHT, Allen G (2006) The estimation of lung mechanics parameters in the presence of pathology: a theoretical analysis. Ann Biomed Eng 34:384–392CrossRefGoogle Scholar
  67. 67.
    Suki B, Yuan H, Zhang Q, Lutchen KR (1997) Partitioning of lung tissue response and inhomogeneous airway constriction at the airway opening. J Appl Physiol 82:1349–1359Google Scholar
  68. 68.
    Yuan H, Suki B, Lutchen KR (1998) Sensitivity analysis for evaluating nonlinear models of lung mechanics. Ann Biomed Eng 26:230–241CrossRefGoogle Scholar
  69. 69.
    Ito S, Ingenito EP, Arold SP, Parameswaran H, Tgavalekos NT, Lutchen KR, Suki B (2004) Tissue heterogeneity in the mouse lung: effects of elastase treatment. J Appl Physiol 204–212Google Scholar
  70. 70.
    Sakai H, Ingenito EP, Mora R, Abbay S, Cavalcante FSA, Lutchen KR, Suki B (2001) Hysteresivity of the lung and tissue strip in the normal rat: effects of heterogeneities. J Appl Physiol 91:737–747Google Scholar
  71. 71.
    Kaczka DW, Ingenito EP, Lutchen KR (1999) Technique to determine inspiratory impedance during mechanical ventilation: implications for flow-limited patients. Ann Biomed Eng 27:340–355CrossRefGoogle Scholar
  72. 72.
    Weibel ER, Gomez DM (1962) Architecture of the human lung. Science 137:577–585CrossRefGoogle Scholar
  73. 73.
    Horsfield K (1986) Morphometry of airways. In: Fishman AP, Macklem PT, Mead J, Geiger SR (eds) Handbook of physiology – section 3: the respiratory system. The American Physiology Society, Bethesda, MD, pp 75–88Google Scholar
  74. 74.
    Horsfield K, Dart G, Olson DE, Filley GF (1971) Cumming G Models of the human bronchial tree. J Appl Physiol 31:207–217Google Scholar
  75. 75.
    Horsfield K, Kemp W, Phillips S (1982) An asymmetrical model of the airways of the dog lung. J Appl Physiol 52:21–26Google Scholar
  76. 76.
    Fredberg JJ, Hoenig A (1978) Mechanical response of the lungs at high frequencies. J Biomech Eng 100:57–66CrossRefGoogle Scholar
  77. 77.
    Fredberg JJ, Moore JA (1978) The distributed response of complex branching duct networks. J Acoust Soc Am 63:954–961CrossRefGoogle Scholar
  78. 78.
    Gillis HL, Lutchen KR (1999b) How heterogeneous bronchoconstriction affects ventilation distribution in human lungs: a morphometric model. Ann Biomed Eng 27:14–22CrossRefGoogle Scholar
  79. 79.
    Jackson AC, Tabrizi M, Kotlikoff MI, Voss JR (1984) Airway pressures in an asymmetrically branched airway model of the dog respiratory system. J Appl Physiol 57:1222–1230Google Scholar
  80. 80.
    Sidell RS, Fredberg JJ (1978) Noninvasive interface of airway network geometry from broadband lung reflection data. J Biomech Eng 100:131–138CrossRefGoogle Scholar
  81. 81.
    Kitaoka H, Takaki R, Suki B (1999) A three-dimensional model of the human airway tree. J Appl Physiol 87:2207–2217Google Scholar
  82. 82.
    Tawhai MH, Hunter P, Tschirren J, Reinhardt JM, McLennan G, Hoffman EA (2004) CT-based geometry analysis and finite element models of the human and ovine bronchial tree. J Appl Physiol 97:2310–2321CrossRefGoogle Scholar
  83. 83.
    Tawhai MH, Pullan AJ, Hunter PJ (2000) Generation of an anatomically based three-dimensional model of the conducting airways. Ann Biomed Eng 28:793–802CrossRefGoogle Scholar
  84. 84.
    Murray CD (1926) The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc Natl Acad Sci 12:207–214CrossRefGoogle Scholar
  85. 85.
    Murray CD (1927) A relationship between circumference and weight in trees and its bearing on branching angles. J Gen Physiol 10:725–729CrossRefGoogle Scholar
  86. 86.
    Sherman TF (1981) On connecting large vessels to small: the meaning of Murray's law. J Gen Physiol 78:431–453CrossRefGoogle Scholar
  87. 87.
    Tawhai MH, Hunter PJ (2004) Modeling water vapor and heat transfer in the normal and the intubated airway. Ann Biomed Eng 32:609–622CrossRefGoogle Scholar
  88. 88.
    McFadden ER Jr, Pichurko BM, Bowman HF, Ingenito E, Burns S, Dowling N, Solway J (1985) Thermal mapping of the airways in humans. J Appl Physiol 58:564–570CrossRefGoogle Scholar
  89. 89.
    Tgavalekos NT, Tawhai M, Harris RS, Musch G, Vidal-Melo M, Venegas JG, Lutchen KR (2005) Identifying airways responsible for heterogeneous ventilation and mechanical dysfunction in asthma: an image functional modeling approach. J Appl Physiol 99:2388–2397CrossRefGoogle Scholar
  90. 90.
    Brown R, Mitzner W (2003a) Functional imaging of airway narrowing. Respir Physiol Neurobiol 137:327–337CrossRefGoogle Scholar
  91. 91.
    Brown RH, Mitzner W (2003b) Understanding airway pathophysiology with computed tomography. J Appl Physiol 95:854–862Google Scholar
  92. 92.
    Gattinoni L, Chiumello D, Biondetti P, Carlesso E (2005) CT Ventilation imaging: technical background and impact in acute lung injury and ARDS management. In: Lipson DA, van Beek EJR (eds) Functional lung imaging. CRC Press, Boca Raton, FL, pp 33–61Google Scholar
  93. 93.
    Stavngaard T, Mortensen J, Dirksen A (2005) Emphysema/alpha-1 antitrypsin deficiency. In: Lipson DA, van Beek EJR (eds) Functional lung imaging. CRC Press, Boca Raton, FL, pp 453–478Google Scholar
  94. 94.
    Hoffman EA, Tajik JK, Kugelmass SD (1995) Matching pulmonary structure and perfusion via combined dynamic multislice CT and thin-slice high resolution CT. Comput Med Imaging Graph 19:101–112CrossRefGoogle Scholar
  95. 95.
    Christensen GE, Song JH, Lu W, El Naqa I, Low DA (2007) Tracking lung tissue motion and expansion/compression with inverse consistent image registration and spirometry. Med Phys 34:2155–2163CrossRefGoogle Scholar
  96. 96.
    Guerrero T, Castillo R, Sanders K, Price R, Komaki R, Cody D (2006) Novel method to calculate pulmonary compliance images in rodents from computed tomography acquired at constant pressures. Phys Med Biol 51:1101–1112CrossRefGoogle Scholar
  97. 97.
    Kaczka DW, Kumar D, Christensen GE, Massa CB, Simon BA (2006) Assessment of regional mechanics in acute lung injury using 3D image registration. Proc Am Thorac Soc 3:A788 (abstract)Google Scholar
  98. 98.
    Musch G, Venegas JG (2005) Positron emission tomography imaging of regional pulmonary perfusion and ventilation. Proc Am Thorac Soc 2:522–527CrossRefGoogle Scholar
  99. 99.
    Musch G, Venegas JG (2006) Positron emission tomography imaging of regional lung function. Minerva Anesthesiol 72:363–367Google Scholar
  100. 100.
    Musch G, Venegas JG, Bellani G, Winkler T, Schroeder T, Petersen B, Harris RS, Vidal Melo MF (2007) Regional gas exchange and cellular metabolic activity in ventilator-induced lung injury. Anesthesiology 106:723–735CrossRefGoogle Scholar
  101. 101.
    Hoffman EA, Clough AV, Christensen GE, Lin, C-L, McLennan G, Reinhardt JM, Simon BA, Sonka M, Tawhai MH, van Beek EJR, Wang G (2004) The comprehensive imaging-based analysis of the lung: a forum for team science. Acad Radiol 11:1370–1380CrossRefGoogle Scholar
  102. 102.
    Millis GH, Wild JM, Eberle B, van Beek EJR (2003) Functional magnetic resonance imaging of the lung. Br J Anaesth 91:16–30CrossRefGoogle Scholar
  103. 103.
    Tzeng Y-S, Hoffman E, Cook-Granroth J, Gereige J, Mansour J, Washko G, Cho M, Stepp E, Lutchen K, Albert M (2008) Investigation of hyperpolarized 3He magnetic resonance imaging utility in examining human airway diameter behavior in asthma through comparison with high-resolution computed tomography. Acad Radiol 15:799–808CrossRefGoogle Scholar
  104. 104.
    van Beek EJR, Hoffman EA (2008) Functional imaging: CT and MRI. Clin Chest Med 29:195–216CrossRefGoogle Scholar
  105. 105.
    Brown RH, Kaczka DW, Fallano K, Chen S, Mitzner W (2008) Temporal variability in responses of individual canine airways to methacholine. J Appl Physiol 104:1381–1386CrossRefGoogle Scholar
  106. 106.
    Mitzner W, Brown R, Lee W (2001) In vivo measurement of lung volumes in mice. Physiol Genomics 4:215–221Google Scholar
  107. 107.
    Vidal Melo MF, Layfield D, Harris RS, O’Neill K, Musch G, Richter T, Winkler T, Fischman AJ, Venegas JG (2003) Quantification of regional ventilation–perfusion ratios with PET. J Nucl Med 44:1982–1991Google Scholar
  108. 108.
    Vidal Melo MF, Harris RS, Layfield JD, Venegas JG (2005) Topographic basis of bimodal ventilation–perfusion distributions during bronchoconstriction in sheep. Am J Respir Crit Care Med 171:714–721CrossRefGoogle Scholar
  109. 109.
    Klarreich E (2003) Take a deep breath. Nature 424:873–874CrossRefGoogle Scholar
  110. 110.
    Samee S, Altes T, Powers P, de Lange EE, Knight-Scott J, Rakes G, Mugler JP 3rd, Ciambotti JM, Alford BA, Brookeman JR, Platts-Mills TA (2003) Imaging the lungs in asthmatic patients by using hyperpolarized helium-3 magnetic resonance: assessment of response to methacholine and exercise challenge. J Allergy Clin Immunol 111:1205–1211CrossRefGoogle Scholar
  111. 111.
    Venegas JG, Schroeder T, Harris S, Winkler RT, Vidal Melo MF (2005) The distribution of ventilation during bronchoconstriction is patchy and bimodal: a PET imaging study. Respir Physiol Neurobiol 148:57–64CrossRefGoogle Scholar
  112. 112.
    Venegas JG, Winkler T, Musch G, Vidal Melo MF, Layfield D, Tgavalekos N, Fischman AJ, Callahan RJ, Bellani G, Harris RS (2005) Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature 434:777–782CrossRefGoogle Scholar
  113. 113.
    Winkler T, Venegas JG (2007) Complex airway behavior and paradoxical responses to bronchoprovocation. J Appl Physiol 103:655–663CrossRefGoogle Scholar
  114. 114.
    Anafi R, Wilson TA (2001) Airway stability and heterogeneity in the constricted lung. J Appl Physiol 91:1185–1192Google Scholar
  115. 115.
    De Backer JW, Vos WG, Gorlé CD, Germonpré P, Partoens B, Wuyts FL, Parizel PM, De Backer W (2008) Flow analyses in the lower airways: patient-specific model and boundary conditions. Med Eng Phys 30:872–879CrossRefGoogle Scholar
  116. 116.
    Lin, C-L, Tawhai MH, McLennan G, Hoffman EA (2007) Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir Physiol Neurobiol 157:295–309CrossRefGoogle Scholar
  117. 117.
    Simon BA (2000) Non-invasive imaging of regional lung function using X-ray computed tomography. J Clin Monit Comput 16:433–442CrossRefGoogle Scholar
  118. 118.
    Simon BA (2005) Regional ventilation and lung mechanics using X-ray CT. Acad Radiol 12:1414–1422CrossRefGoogle Scholar
  119. 119.
    Hubmayr RD, Walters BJ, Chevalier PA, Rodarte JR, Olson LE (1983) Topographical distribution of regional volume in anesthetized dogs. J Appl Physiol 54:1048–1056CrossRefGoogle Scholar
  120. 120.
    Martynowicz MA, Minor T, Walters BJ, Hubmayr RD (1999) Regional expansion of oleic acid-injured lungs. Am J Respir Crit Care Med 160:250–258Google Scholar
  121. 121.
    Martynowicz MA, Walters BJ, Hubmayr RD (2001) Mechanisms of recruitment in oleic acid-injured lungs. J Appl Physiol 90:1744–1753Google Scholar
  122. 122.
    Bellardine-Black CL, Hoffman AM, Tsai L, Ingenito EP, Suki B, Kaczka DW, Simon BA, Lutchen KR (2007) Relationship between dynamic respiratory mechanics and disease heterogeneity in sheep lavage injury. Crit Care Med 35:870–878CrossRefGoogle Scholar
  123. 123.
    Gattinoni L, Pelosi P, Crotti S, Valenza F (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151:1807–1814Google Scholar
  124. 124.
    Gattinoni L, Vagginelli F, Chiumello D, Taccone P, Carlesso E (2003) Physiologic rationale for ventilator setting in acute lung injury/acute respiratory distress syndrome patients. Crit Care Med 31:S300–S304CrossRefGoogle Scholar
  125. 125.
    Hubmayr RD (2002) Perspective on lung injury and recruitment: a skeptical look at the opening and collapse story. Am J Respir Crit Care Med 165:1647–1653CrossRefGoogle Scholar
  126. 126.
    Chen C-T (2003) Radiologic image registration: old skills and new tools. Acad Radiol 10:239–241CrossRefGoogle Scholar
  127. 127.
    Christensen GE, Johnson HJ (2001) Consistent image registration. IEEE Trans Med Imaging 20:568–582CrossRefGoogle Scholar
  128. 128.
    Dougherty L, Asmuth JC, Gefter WB (2003) Alignment of CT lung volumes with an optical flow method. Acad Radiol 10:249–254CrossRefGoogle Scholar
  129. 129.
    Guerrero T, Zhang G, Huang TC, Lin KP (2004) Intrathoracic tumour motion estimation from CT imaging using the 3D optical flow method. Phys Med Biol 49:4147–4161CrossRefGoogle Scholar
  130. 130.
    Johnson HJ, Christensen GE (2002) Consistent landmark and intensity-based image registration. IEEE Trans Med Imaging 21:450–461CrossRefGoogle Scholar
  131. 131.
    Pan Y, Kumar D, Hoffman EA, Christensen GE, McLennan G, Song JH, Ross A, Simon BA, Reinhardt JM (2005) Estimation of regional lung expansion via 3D image registration. Proc SPIE 5764:453–464CrossRefGoogle Scholar
  132. 132.
    Simon BA, Christensen GE, Low DA, Reinhardt JM (2005) Computed tomography studies of lung mechanics. Proc Am Thorac Soc 2:517–521CrossRefGoogle Scholar
  133. 133.
    Ganesan S, Rouch KE, Lai-Fook SJ (1995) A finite element analysis of the effects of the abdomen on regional lung expansion. Respir Physiol 99:341–353CrossRefGoogle Scholar
  134. 134.
    Matthews FL, West JB (1972) Finite element displacement analysis of a lung. J Biomech 5:591–600CrossRefGoogle Scholar
  135. 135.
    Kowalczyk P, Klieber M (1994) Modeling and numerical-analysis of stresses and strains in the human lung including tissue-gas interaction. Eur J Mech Solids 13:367–393MATHGoogle Scholar
  136. 136.
    Lee GC, Tseng NT, Yuan YM (1983) Finite element modeling of lungs including interlobar fissures and the heart cavity. J Biomech 16:679–690CrossRefGoogle Scholar
  137. 137.
    Tani J, Nakamura M, Sasaki H, Okubo T, Takishima T, Hildebrandt J (1982) Mechanical behavior of lung parenchyma as a compressible continuum: a theoretical analysis. Tohoku J Exp Med 137:125–136CrossRefGoogle Scholar
  138. 138.
    Tawhai MH, Nash MP, Hoffman EA (2006) An imaging-based computational approach to model ventilation distribution and soft-tissue deformation in the ovine lung. Acad Radiol 13:113–120CrossRefGoogle Scholar
  139. 139.
    Tawhai MH, Nash MP, Tschirren J, Hoffman EA, Hunter PJ (2005) An image-based computational model of ovine lung mechanics and ventilation distribution. In: Amini AA, Manduca A (eds) SPIE medical imaging. SPIE, San Diego, CA, pp 84–91Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • David W. Kaczka
    • 1
  • Ashley A. Colletti
    • 2
  • Merryn H. Tawhai
    • 3
  • Brett A. Simon
    • 4
  1. 1.Harvard Medical School, Beth Israel Deaconess Medical CenterBostonUSA
  2. 2.University of Toledo School of MedicineToledoUSA
  3. 3.Auckland Bioengineering Institute, The University of AucklandAucklandNew Zealand
  4. 4.Harvard Medical School, Beth Israel Deaconess Medical CenterBostonUSA

Personalised recommendations