Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 2004; 142:231–255.
PubMed
CAS
Google Scholar
Halliwell B. Oxidative stress and cancer: have we moved forward? Biochem J 2007; 401:1–11.
PubMed
CAS
Google Scholar
Stadman ER, Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 2003; 25:207–218.
Google Scholar
Ogino K, Wang DH. Biomarkers of oxidative/nitrosative stress: an approach to disease prevention. Acta Med Okayama 2007; 61(4):181–189.
PubMed
CAS
Google Scholar
Bruckdorfer KR. Antioxidant and CVD. Proc Nutr Soc 2008; 67(2):214–222.
PubMed
CAS
Google Scholar
Riccioni G, Bucciarelli T, Mancini B et al. The role of the antioxidant vitamin supplementation in the prevention of cardiovascular diseases. Expert Opinion on Investigational Drugs 2007; 16(1):25–32.
PubMed
CAS
Google Scholar
Nishikawa M, Inoue M. Oxidative stress and tissue injury. Masui 2008; 57(3):321–326.
PubMed
Google Scholar
Tremellen K. Oxidative stress and male infertility—a clinical perspective. Hum Reprod Update 2008; 14(3):243–258.
PubMed
CAS
Google Scholar
Gao L, Laude K, Cai H. Mitochondrial pathophysiology, reactive oxygen species and cardiovascular diseases. Vet Clin North Am Small Anim Pract 2008; 38(1):137–155.
PubMed
Google Scholar
Nunomura A, Moreira PI, Takeda A et al. Oxidative RNA damage and neurodegeneration. Curr Med Chem 2007; 14(28):2968–2975.
PubMed
CAS
Google Scholar
Rohr-Udilova NV, Stolze K, Sagmeister S et al. Lipid hydroperoxides from processed dietary oils enhance growth of hepatocarcinoma cells. Mol Nutr Food Res 2008; 52(3):352–359.
PubMed
CAS
Google Scholar
Esme H, Cemek M, Sezer M et al. High levels of oxidative stress in patients with advanced lung cancer. Respirology 2008; 13(1):112–116.
PubMed
Google Scholar
Riedl MA, Nel AE. Importance of oxidative stress in the pathogenesis and treatment of asthma. Curr Opin Allergy Clin Immunol 2008; 8(1):49–56.
PubMed
CAS
Google Scholar
Shi Q, Gibson GE. Oxidative stress and transcriptional regulation in Alzheimer disease. Alzheimer Dis Assoc Disord 2007; 21(4):276–291.
PubMed
CAS
Google Scholar
Bonomini F, Tengattini S, Fabiano A et al. Atherosclerosis and oxidative stress. Histol Histopathol 2008; 23(3):381–390.
PubMed
CAS
Google Scholar
Walters DM, Cho HY, Kleeberger SR. Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: a potential role for Nrf2. Antioxid Redox Signal 2008; 10(2):321–332.
PubMed
CAS
Google Scholar
Wittgen HG, van Kempen LC. Reactive oxygen species in melanoma and its therapeutic implications. Melanoma Res 2007; 17(6):400–409.
PubMed
CAS
Google Scholar
Hung JH. Oxidative stress and antioxidants in preeclampsia. J Chin Med Assoc 2007; 70(10):430–432.
PubMed
CAS
Google Scholar
Gerry AB, Satchell L, Leake DS. A novel method for production of lipid hydroperoxide—or oxysterol-rich low-density lipoprotein. Atherosclerosis 2008; 197:579–587.
PubMed
CAS
Google Scholar
Aldred S. Oxidative and nitrative changes seen in lipoproteins following exercise. Atherosclerosis 2007; 192:1–8.
PubMed
CAS
Google Scholar
Lapointe A, Couillard C, Lemieux S. Effect of dietary factors on oxidation of low-density lipoprotein particles. J Nutr Biochem 2006; 17:645–658.
PubMed
CAS
Google Scholar
Saura-Calixto F, Goni I. Antioxidant capacity of the Spanish Mediterranean diet. Food Chem 2006; 94:442–447.
CAS
Google Scholar
Ott M, Gogvadze V, Orrenius S et al. Mitochondria, oxidative stress and cell death. Apoptosis 2007; 12(5):913–922.
PubMed
CAS
Google Scholar
Nishikori M. Classical and alternative NF-kB activation pathways and their roles in lymphoid malignancies. J Clin Hematopathol 2005; 45:15–24.
Google Scholar
Raha S, Robinson BH. Mitochondria, oxygen free radical and apoptosis. Am J Med Genet 2001; 106(1):62–70.
PubMed
CAS
Google Scholar
May MJ, Ghosh S. Signal transduction through NF-kB. Immunol Today 1998; 19(2):80–88.
PubMed
CAS
Google Scholar
Franco R, Schoneveld OJ, Pappa A et al. The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 2007; 113(4–5):234–258.
PubMed
CAS
Google Scholar
Devasagayam TP, Tilak JC, Boloor KK et al. Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 2004; 52:794–804.
PubMed
CAS
Google Scholar
Botta D, White CC, Vliet-Gregg P et al. Modulating GSH synthesis using glutamate cysteine ligase transgenic and gene-targeted mice. Drug Metab Rev 2008; 40(3):465–477.
PubMed
CAS
Google Scholar
Liu J, Ames BN. Reducing mitochondrial decay with mitochondrial nutrients to delay and treat cognitive dysfunction, Alzheimer’s disease and Parkinson’s disease. Nutr Neurosci 2005; 8(2):67–89.
PubMed
CAS
Google Scholar
Liu J. The effects and mechanisms of mitochondrial nutrient alpha-lipoic acid on improving age-associated mitochondrial and cognitive dysfunction: an overview. Neurochem Res 2008; 33(1):194–203.
PubMed
CAS
Google Scholar
Bilska A, Włodek L. Lipoic acid—the drug of the future? Pharmacol Rep 2005; 57(5):570–577.
PubMed
CAS
Google Scholar
Manda K, Ueno M, Anzai K. Memory impairment, oxidative damage and apoptosis induced by space radiation: ameliorative potential of alpha-lipoic acid. J Behav Brain Res 2008; 187(2):387–395.
CAS
Google Scholar
Makeeva AV, Popova TN, Matasova LV et al. Effects of lipoic acid on citrate content, aconitate hydratase activity and oxidative status during myocardial ischemia in rats. Biochemistry (Mosc) 2008; 73(1):76–79.
CAS
Google Scholar
Lee CK, Lee EY, Kim YG et al. Alpha-lipoic acid inhibits TNF-alpha induced NF-kappa B activation through blocking of MEKK1-MKK4-IKK signaling cascades. Int Immunopharmacol 2008; 8(2):362–370.
PubMed
CAS
Google Scholar
Gille L, Nohl H. The existence of a lysosomal redox chain and the role of ubiquinone. Arch Biochem Biophys 2000; 375:347–354.
PubMed
CAS
Google Scholar
Bentinger M, Brismar K, Dallner G. The antioxidant role of coenzyme Q. Mitochondrion 2007; 7(1):S41–S50.
PubMed
CAS
Google Scholar
Echtay KS, Winkler E, Klingenberg M. Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature 2000; 408:609–613.
PubMed
CAS
Google Scholar
Echtay KS, Winkler E, Frischmuth K et al. Uncoupling proteins 2 and 3 are highly active H+ transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc Natl Acad Sci USA 2001; 98:1416–1421.
PubMed
CAS
Google Scholar
Walter L, Miyoshi H, Leverve X et al. Regulation of the mitochondrial permeability transition pore by ubiquinone analogs, A progress report. Free Radic Res 2002; 36:405–412.
PubMed
CAS
Google Scholar
Papucci L, Schiavone N, Witort E et al. Coenzyme Q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J Biol Chem 2003; 278:28220–28228.
PubMed
CAS
Google Scholar
Kettawan A, Takahashi T, Kongkachuichai R et al. Protective effects of coenzyme q(10) on decreased oxidative stress resistance induced by simvastatin. J Clin Biochem Nutr 2007; 40(3): 194–202.
PubMed
CAS
Google Scholar
Wood R, Ronnenberg AG. Iron 2006; 248–270. In: Shills MA et al. eds. Modern nutrition in health and disease. X edition. Lipincott 2006.
Google Scholar
Miller NJ, Evans CA. Spectrophotometric determination of antioxidant activity. Redox Report 1996; 2:161–171.
CAS
Google Scholar
Ishizaka N, Ishizaka Y, Toda E et al. Association between serum uric acid, metabolic syndrome and carotid atherosclerosis in Japanese individuals. Arterioscler Thromb Vasc Biol 2005; 25(5):1038–1044.
PubMed
CAS
Google Scholar
Rodrigo R, Castello R, Carrasco R et al. Diminution of tissue lipid peroxidation in rats is related to the in vitro antioxidant capacity of wine. Life Sci 2005; 76:889–900.
PubMed
CAS
Google Scholar
Gomez-Cabrera MC, Borras C, Pallardò FV et al. Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol 2005:113–120.
Google Scholar
Otterbein LE, Soares MP, Yamashita K et al. Heme oxygenase-1:unleashing the protective properties of heme. Trends Immunol 2004; 24:449–455.
Google Scholar
Stocker R, Yamamoto Y, McDonagh A et al. Bilirubin is antioxidant of possible physiological importance. Science 1987; 235:1043–1046.
PubMed
CAS
Google Scholar
Clark JE, Foresti R, Sarathchandra P et al. Heme oxygenase-1-derived bilirubin ameliorates postischemic myocardial dysfunction. Am J Physiol Heart Circ Physiol 2000; 278:H643–H651.
PubMed
CAS
Google Scholar
Foresti R, Sarathchandra P, Clark JE et al. Peroxynitrite induces haem oxygenase-1 in vascular endothelial cells: a link to apoptosis. Biochem J 1999; 339:729–736.
PubMed
CAS
Google Scholar
Samb A, Taille C, Almolki A et al. Heme oxygenase modulates oxidant-signaled airway smooth muscle contractility: role of bilirubin. Am J Physiol Lung Cell Mol Physiol 2002; 283:L596–L603.
PubMed
CAS
Google Scholar
Dore S, Snyder SH. Neuroprotective action of bilirubin against oxidative stress in primary hippocampal cultures. Ann NY Acad Sci 1999; 890:167–172.
PubMed
CAS
Google Scholar
Baranano DE, Rao M, Ferris CD et al. Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci USA 2002; 99:16093–16098.
PubMed
CAS
Google Scholar
Kato Y, Shimazu M, Kondo M et al. Bilirubin rinse: A simple protectant against the rat liver graft injury mimicking heme oxygenase-1 preconditioning. Hepatology 2003; 38:364–373.
PubMed
CAS
Google Scholar
Adin CA, Croker BP, Agarwal A. Protective effects of exogenous bilirubin on ischemia-reperfusion injury in the isolated, perfused rat kidney. Am J Physiol Renal Physiol 2005; 288:F778–F784.
PubMed
CAS
Google Scholar
Nakao A, Otterbein LE, Overhaus M et al. Biliverdin protects the functional integrity of a transplanted syngeneic small bowel. Gastroenterology 2004; 127:595–606.
PubMed
CAS
Google Scholar
Kaur H, Hughes MN, Green CJ et al. Interaction of bilirubin and biliverdin with reactive nitrogen species. FEBS Lett 2003; 543:113–119.
PubMed
CAS
Google Scholar
Hopkins PN, Wu LL, Hunt SC et al. Higher serum bilirubin is associated with decreased risk for early familial coronary artery disease. Arterioscler Thromb Vasc Biol 1996; 16:250–255.
PubMed
CAS
Google Scholar
Temme EH, Zhang J, Schouten EG et al. Serum bilirubin and 10-year mortality risk in a Belgian population. Cancer Causes Control 2001; 12:887–894.
PubMed
CAS
Google Scholar
Lanone S, Bloc S, Foresti R et al. Bilirubin decreases NOS2 expression via inhibition of NAD(P)H oxidase: implications for protection against endotoxic shocks in rats. FASEB J 2005; 19(13):1890–1892.
PubMed
CAS
Google Scholar
Troughton J, Woodside JV, Young IA et al. Bilirubin and coronary heart disease risk in the Prospective Epidemiological Study of Myocardial Infraction (PRIME). Eur J Cardiovasc Prev Rehabil 2007; 14(1):79–84.
PubMed
Google Scholar
Perlstein TS, Pande RL, Beckman JA et al. Serum total bilirubin level and prevalent lower-extremity peripheral arterial disease: National Health and Nutrition Examination Survey (NHANES) 1999 to 2004. Arterioscler Thromb Vasc Biol 2008; 28(1):166–172.
PubMed
CAS
Google Scholar
Gullu H, Erdogan D, Tok D et al. High serum bilirubin concentrations preserve coronary flow reserve and coronary microvascular functions. Arterioscler Thromb Vasc Biol 2005; 25(11):2289–2294.
PubMed
CAS
Google Scholar
Erdogan D, Gullu H, Yildirim E et al. Low serum bilirubin levels are independently and inversely related to impaired flow-mediated vasodilation and increased carotid intima-media thickness in both men and women. Atherosclerosis 2006; 184(2):431–437.
PubMed
CAS
Google Scholar
Dohi K, Satoh K, Ohtaki H et al. Elevated plasma levels of bilirubin in patients with neurotrauma reflect its pathophysiological role in free radical scavenging in vivo. 2005; 19(5):855–860.
CAS
Google Scholar
Shekeeb Shahab M, Kumar P, Sharma N et al. Evaluation of oxidant and antioxidant status in term neonates: a plausible protective role of bilirubin. Mol Cell Biochem 2008; 317(1–2):51–59.
Google Scholar
Sedlak TW, Snyder SH. Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics 2004; 113(6): 1776–1782.
PubMed
Google Scholar
Carpenè E, Andreani G, Isani G. Metallothionein functions and structural characteristics. J Trace Elem Med Biol 2007; 21(Suppl 1):35–39.
PubMed
Google Scholar
http://www.expasy.org/cgi-bin/lists?metallo.txt.
Li Y, Kimura T, Laity JH et al. The zinc-sensing mechanism of mouse MTF-1 involves linker peptides between the zinc fingers. Mol Cell Biol 2006; 26:5580–5587.
PubMed
CAS
Google Scholar
Uchida Y. Growth inhibitory factor, metallothionein-like protein and neurodegenerative diseases. Biol Signals 1994; 3:211–215.
PubMed
CAS
Google Scholar
Hussain W et al. Role of metallothionein and other antioxidants in scavenging superoxide radicals and their possible role in neuroprotection. Neurochem Int 1996; 29:145–152.
PubMed
CAS
Google Scholar
Hwang YP, Kim HG, Han EH et al. Metallothionein-III protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a PI3K and ERK/Nrf2-dependent manner. Toxicol Appl Pharmacol 2008; 231(3):318–327.
PubMed
CAS
Google Scholar
Gülçin I. Antioxidant and antiradical activities of L-carnitine. Life Sci 2006; 18: 78(8):803–811.
PubMed
Google Scholar
Binienda ZK, Ali SF. Neuroprotective role of l-carnitine in the 3-nitropropionic acid induced neurotoxicity. Toxicology Letters 2001; 125:67–73.
PubMed
CAS
Google Scholar
Kremser K, Stangl H, Pahan K et al. Nitric oxide regulates peroxisomal enzyme activities. Europane Journal of Clinic Chemisty and Clinic Biochemistry 1995; 33:763–774.
CAS
Google Scholar
Dokmeci D, Inan M, Basaran UN et al. Protective effect of L-carnitine on testicular ischaemia-reperfusion injury in rats. Cell Biochem Funct 2007; 25(6):611–618.
PubMed
CAS
Google Scholar
Lal A, Atamna W, Killilea DW et al. Lipoic acid and acetyl-carnitine reverse iron-induced oxidative stress in human fibroblasts. Redox Rep 2008; 13(1):2–10.
PubMed
CAS
Google Scholar
McMackin CJ, Widlansky ME, Hamburg NM et al. Effect of combined treatment with alpha-Lipoic acid and acetyl-L-carnitine on vascular function and blood pressure in patients with coronary artery disease. J Clin Hypertens (Greenwich) 2007; 9(4):249–255.
CAS
Google Scholar
Xie J, Zeng Q, Wang L. The protective effect of L-carnitine on ischemia-reperfusion heart. J Huazhong Univ Sci Technolog Med Sci 2006; 26(2): 188–191.
PubMed
CAS
Google Scholar
Thangasamy T, Jeyakumar P, Sittadjody S et al. L-Carnitine mediates protection against DNA damage in lymphocytes of aged rats. Biogerontology 2009; 10(2):163–172.
PubMed
CAS
Google Scholar
Calabrese V, Giuffrida Stella AM, Calvani M et al. Acetylcarnitine and cellular stress response: roles in nutritional redox homeostasis and regulation of longevity genes. J Nutr Biochem 2006; 17(2):73–88.
PubMed
CAS
Google Scholar
Hardeland R, Poeggeler B. Nonvertebrate melatonin. J Pineal Res 2003; 34:233–234.
PubMed
CAS
Google Scholar
Conway S, Drew JE, Mowat P et al. Chimeric melatonin mtl and melatonin-related receptors. Identification of domains and residues participating in ligand binding and receptor activation of the melatonin mtl receptor. J Biol Chem 2000; 275:20602–20609.
PubMed
CAS
Google Scholar
Garcia-Maurino S, Pozo D, Calvo JR et al. Correlation between nuclear melatonin receptor expression and enhanced cytokine production in human lymphocytic and monocytic cell lines. J Pineal Res 2000; 29:129–137.
PubMed
CAS
Google Scholar
Srinivasan V, Pandi-Perumal SR, Cardinali DP et al. Melatonin in Alzheimer’s disease and other neurodegenerative disorders. Behav Brain Funct 2006; 2–15.
Google Scholar
Tan DX, Reiter RJ, Manchester LC et al. Chemical and physical properties and potential mechanism: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2002; 2:181–197.
PubMed
CAS
Google Scholar
Buyukavci M, Ozdemir O, Buck S et al. Melatonin cytotoxicity in human leukaemia cells: relation with its prooxidant effect. Fundam Clin Pharmacol 2006; 20:73–79.
PubMed
CAS
Google Scholar
Rodriguez C, Mayo JC, Sainz RM et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 2004; 36:1–9.
PubMed
CAS
Google Scholar
Anisimov SV, Popovic N. Genetic aspects of melatonin biology. Rev Neurosci 2004; 15:209–230.
PubMed
CAS
Google Scholar
Reiter RJ, Acuna-Castroviejo D, Tan DX et al. Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system. Ann NY Acad Sci 2001; 939:200–215.
PubMed
CAS
Google Scholar
Koh PO. Melatonin regulates nitric oxide synthase expression in ischemic brain injury. J Vet Med Sci 2008; 70(7):747–750.
PubMed
CAS
Google Scholar
Garcia JJ, Reiter JR, Pie J et al. Role of pinoline and melatonin in stabilizing hepatic microsomal membranes against oxidative damage. J Bioenerg Biomen 1999; 31:609–616.
CAS
Google Scholar
Karbownik MA, Reiter RJ. Antioxidative effects of melatonin in protection against cellular damage caused by ionizing radiation. Proc Soc Exp Biol Med 2000; 225:9–22.
PubMed
CAS
Google Scholar
Lahiri DK, Ge YW, Sharman EH et al. Age-related changes in serum melatonin in mice: higher levels of combined melatonin and 6-hydroxymelatonin sulphate in the cerebral cortex than serum, heart, liver and kidney tissues. J Pineal Res 2004; 36:217–223.
PubMed
CAS
Google Scholar
Sanchez-Moreno C, Dorfmann SE, Lichtestein AH et al. Dietary fat type affects vitamins C and E and biomarkers of oxidative status in peripheral and brain tissue of golden Syrian hamsters. J Nutr 2004; 134:655–660.
PubMed
CAS
Google Scholar
Rousseau A, Petren S, Plannthin J et al. Serum and cerebrospinal fluid concentration of melatonin: a pilot study in healthy male volunteers. J Neural Transm 1999; 106:883–888.
PubMed
CAS
Google Scholar
Filadelfi AM, Castrucci AM. Comparative aspects of the pineal melatonin system of poikilothermic vertebrates. J Pineal Res 1996; 20:175–186.
PubMed
CAS
Google Scholar
Kotler M, Rodriguez C, Sainz RM et al. Melatonin increases gene expression for antioxidant enzymes in rat brain cortex. J Pineal Res 1998; 24:83–89.
PubMed
CAS
Google Scholar
Berra B, Rizzo AM. Melatonin: circadian rhythm regulator, chronobiotic, antioxidant and beyond. Clinics in Dermatology 2008; 27(2):202–209.
Google Scholar
Martin M, Macias G, Escames G et al. Melatonin-induced increased activity of the respiratory chain complexes I and IV can prevent mitochondrial damage induced by ruthenium red in vivo. J Pineal Res 2000; 28:242–248.
PubMed
CAS
Google Scholar
Urata Y, Honma S, Goto S et al. Melatonin induces glutamylcysteine synthase mediated by activator protein-I in human vascular endothelial cells. Free Rad Biol Med 1999; 27:838–847.
PubMed
CAS
Google Scholar
Yu BP, Chung HV. Adaptive mechanism to oxidative stress during aging. Mech Ageing Dev 2006; 127:436–443.
PubMed
CAS
Google Scholar
Skene DJ, Swaab DF. Melatonin rhythmicity: effect of age and Alzheimer’s disease. Exp Gerontol 2003; 38:199–206.
PubMed
CAS
Google Scholar
Swaab DF. The human hypothalamus basic and clinical aspects. Handbook of Clinical Neurology. Aminoff MJ, Francois B, Swaab DF series eds. Elsevier, Amsterdam 2003; 79:63–123.
Google Scholar
Fourtillian JB, Brisson AM, Fourtillian M et al. Melatonin secretion occurs at a costant rate in both young and older men and women. Am J Physiol Endocrinol Metab 2001; 280:E11–E22.
Google Scholar
Duffy JF, Zeitzer JM, Rimmer DW et al. Peak of circadian melatonin rhythm occurs later within the sleep of older subjects. Am J Physiol Endocrinol Metab 2002; 282:E297–E303.
PubMed
CAS
Google Scholar
Lu F. Reactive oxygen species in cancer, too much or too little? Med Hypotheses 2007; 69(6): 1293–1298.
PubMed
CAS
Google Scholar
Fruehauf JP, Meyskens FFL. Reactive oxygen species: A breath of life or death? Clin Cancer Res 2007; 13(3):789–794.
PubMed
CAS
Google Scholar
Tuma S. Reactive oxygen species may have antitumor activity in metastatic melanoma. JNCI 2008; 100:11–12.
PubMed
Google Scholar
Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82:47–95.
PubMed
CAS
Google Scholar
Lee SR, Yang KS, Kwon J et al. Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 2002; 277:20336–20342.
PubMed
CAS
Google Scholar
Adachi T, Weisbrod RM, Pimentel DR et al. S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 2004; 10:1200–1207.
PubMed
CAS
Google Scholar
Adachi T, Pimentel DR, Heibeck T et al. S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells. J Biol Chem 2004; 27:29857–29862.
Google Scholar
Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase. Role in cardiovascular biology and disease. Circ Res 2000; 86:494–501.
PubMed
CAS
Google Scholar
Ushio-Fukai M. Alexander RW, Akers M et al. Reactive oxygen species mediate the activation of Akt/ protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 1999; 274:22699–22704.
PubMed
CAS
Google Scholar
Forman HJ, Torres M, Fukuto J. Redox signaling. Mol Cell Biochem 2002; 234-235:49–62.
PubMed
Google Scholar
Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 2001; 30:1191–1212.
PubMed
CAS
Google Scholar
Xu D, Rovira II, Finkel T. Oxidants painting the cysteine chapel: redox regulation of PTPs. Dev Cell 2002; 2:251–252.
PubMed
CAS
Google Scholar
Filomeni G, Rotilio G, Ciriolo MR. Cell signalling and the glutathione redox system. Biochem Pharmacol 2002; 64:1057–1064.
PubMed
CAS
Google Scholar
Magder S. Reactive oxygen species: toxic molecules or spark of life? Critical Care 2006; 10:208–216.
PubMed
Google Scholar