Skip to main content

Endogenous Antioxidants and Radical Scavengers

  • Chapter

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 698)

Abstract

All living organisms are constantly exposed to oxidant agents deriving from both endogenous and exogenous sources capable to modify biomolecules and induce damages. Free radicals generated by oxidative stress exert an important role in the development of tissue damage and aging. Reactive species (RS) derived from oxygen (ROS) and nitrogen (RNS) pertain to free radicals family and are constituted by various forms of activated oxygen or nitrogen. RS are continuosly produced during normal physiological events but can be removed by antioxidant defence mechanism: the imbalance between RS and antioxidant defence mechanism leads to modifications in cellular membrane or intracellular molecules. In this chapter only endogenous antioxidant molecules will be critically discussed, such as Glutathione, Alpha-lipoic acid, Coenzyme Q, Ferritin, Uric acid, Bilirubin, Metallothioneine, L-carnitine and Melatonin.

Keywords

  • Uric Acid
  • Lipoic Acid
  • Arterioscler Thromb Vasc Biol
  • Endogenous Antioxidant
  • Biliverdin Reductase

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4419-7347-4_5
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-1-4419-7347-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 2004; 142:231–255.

    PubMed  CAS  Google Scholar 

  2. Halliwell B. Oxidative stress and cancer: have we moved forward? Biochem J 2007; 401:1–11.

    PubMed  CAS  Google Scholar 

  3. Stadman ER, Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 2003; 25:207–218.

    Google Scholar 

  4. Ogino K, Wang DH. Biomarkers of oxidative/nitrosative stress: an approach to disease prevention. Acta Med Okayama 2007; 61(4):181–189.

    PubMed  CAS  Google Scholar 

  5. Bruckdorfer KR. Antioxidant and CVD. Proc Nutr Soc 2008; 67(2):214–222.

    PubMed  CAS  Google Scholar 

  6. Riccioni G, Bucciarelli T, Mancini B et al. The role of the antioxidant vitamin supplementation in the prevention of cardiovascular diseases. Expert Opinion on Investigational Drugs 2007; 16(1):25–32.

    PubMed  CAS  Google Scholar 

  7. Nishikawa M, Inoue M. Oxidative stress and tissue injury. Masui 2008; 57(3):321–326.

    PubMed  Google Scholar 

  8. Tremellen K. Oxidative stress and male infertility—a clinical perspective. Hum Reprod Update 2008; 14(3):243–258.

    PubMed  CAS  Google Scholar 

  9. Gao L, Laude K, Cai H. Mitochondrial pathophysiology, reactive oxygen species and cardiovascular diseases. Vet Clin North Am Small Anim Pract 2008; 38(1):137–155.

    PubMed  Google Scholar 

  10. Nunomura A, Moreira PI, Takeda A et al. Oxidative RNA damage and neurodegeneration. Curr Med Chem 2007; 14(28):2968–2975.

    PubMed  CAS  Google Scholar 

  11. Rohr-Udilova NV, Stolze K, Sagmeister S et al. Lipid hydroperoxides from processed dietary oils enhance growth of hepatocarcinoma cells. Mol Nutr Food Res 2008; 52(3):352–359.

    PubMed  CAS  Google Scholar 

  12. Esme H, Cemek M, Sezer M et al. High levels of oxidative stress in patients with advanced lung cancer. Respirology 2008; 13(1):112–116.

    PubMed  Google Scholar 

  13. Riedl MA, Nel AE. Importance of oxidative stress in the pathogenesis and treatment of asthma. Curr Opin Allergy Clin Immunol 2008; 8(1):49–56.

    PubMed  CAS  Google Scholar 

  14. Shi Q, Gibson GE. Oxidative stress and transcriptional regulation in Alzheimer disease. Alzheimer Dis Assoc Disord 2007; 21(4):276–291.

    PubMed  CAS  Google Scholar 

  15. Bonomini F, Tengattini S, Fabiano A et al. Atherosclerosis and oxidative stress. Histol Histopathol 2008; 23(3):381–390.

    PubMed  CAS  Google Scholar 

  16. Walters DM, Cho HY, Kleeberger SR. Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: a potential role for Nrf2. Antioxid Redox Signal 2008; 10(2):321–332.

    PubMed  CAS  Google Scholar 

  17. Wittgen HG, van Kempen LC. Reactive oxygen species in melanoma and its therapeutic implications. Melanoma Res 2007; 17(6):400–409.

    PubMed  CAS  Google Scholar 

  18. Hung JH. Oxidative stress and antioxidants in preeclampsia. J Chin Med Assoc 2007; 70(10):430–432.

    PubMed  CAS  Google Scholar 

  19. Gerry AB, Satchell L, Leake DS. A novel method for production of lipid hydroperoxide—or oxysterol-rich low-density lipoprotein. Atherosclerosis 2008; 197:579–587.

    PubMed  CAS  Google Scholar 

  20. Aldred S. Oxidative and nitrative changes seen in lipoproteins following exercise. Atherosclerosis 2007; 192:1–8.

    PubMed  CAS  Google Scholar 

  21. Lapointe A, Couillard C, Lemieux S. Effect of dietary factors on oxidation of low-density lipoprotein particles. J Nutr Biochem 2006; 17:645–658.

    PubMed  CAS  Google Scholar 

  22. Saura-Calixto F, Goni I. Antioxidant capacity of the Spanish Mediterranean diet. Food Chem 2006; 94:442–447.

    CAS  Google Scholar 

  23. Ott M, Gogvadze V, Orrenius S et al. Mitochondria, oxidative stress and cell death. Apoptosis 2007; 12(5):913–922.

    PubMed  CAS  Google Scholar 

  24. Nishikori M. Classical and alternative NF-kB activation pathways and their roles in lymphoid malignancies. J Clin Hematopathol 2005; 45:15–24.

    Google Scholar 

  25. Raha S, Robinson BH. Mitochondria, oxygen free radical and apoptosis. Am J Med Genet 2001; 106(1):62–70.

    PubMed  CAS  Google Scholar 

  26. May MJ, Ghosh S. Signal transduction through NF-kB. Immunol Today 1998; 19(2):80–88.

    PubMed  CAS  Google Scholar 

  27. Franco R, Schoneveld OJ, Pappa A et al. The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 2007; 113(4–5):234–258.

    PubMed  CAS  Google Scholar 

  28. Devasagayam TP, Tilak JC, Boloor KK et al. Free radicals and antioxidants in human health: current status and future prospects. J Assoc Physicians India 2004; 52:794–804.

    PubMed  CAS  Google Scholar 

  29. Botta D, White CC, Vliet-Gregg P et al. Modulating GSH synthesis using glutamate cysteine ligase transgenic and gene-targeted mice. Drug Metab Rev 2008; 40(3):465–477.

    PubMed  CAS  Google Scholar 

  30. Liu J, Ames BN. Reducing mitochondrial decay with mitochondrial nutrients to delay and treat cognitive dysfunction, Alzheimer’s disease and Parkinson’s disease. Nutr Neurosci 2005; 8(2):67–89.

    PubMed  CAS  Google Scholar 

  31. Liu J. The effects and mechanisms of mitochondrial nutrient alpha-lipoic acid on improving age-associated mitochondrial and cognitive dysfunction: an overview. Neurochem Res 2008; 33(1):194–203.

    PubMed  CAS  Google Scholar 

  32. Bilska A, Włodek L. Lipoic acid—the drug of the future? Pharmacol Rep 2005; 57(5):570–577.

    PubMed  CAS  Google Scholar 

  33. Manda K, Ueno M, Anzai K. Memory impairment, oxidative damage and apoptosis induced by space radiation: ameliorative potential of alpha-lipoic acid. J Behav Brain Res 2008; 187(2):387–395.

    CAS  Google Scholar 

  34. Makeeva AV, Popova TN, Matasova LV et al. Effects of lipoic acid on citrate content, aconitate hydratase activity and oxidative status during myocardial ischemia in rats. Biochemistry (Mosc) 2008; 73(1):76–79.

    CAS  Google Scholar 

  35. Lee CK, Lee EY, Kim YG et al. Alpha-lipoic acid inhibits TNF-alpha induced NF-kappa B activation through blocking of MEKK1-MKK4-IKK signaling cascades. Int Immunopharmacol 2008; 8(2):362–370.

    PubMed  CAS  Google Scholar 

  36. Gille L, Nohl H. The existence of a lysosomal redox chain and the role of ubiquinone. Arch Biochem Biophys 2000; 375:347–354.

    PubMed  CAS  Google Scholar 

  37. Bentinger M, Brismar K, Dallner G. The antioxidant role of coenzyme Q. Mitochondrion 2007; 7(1):S41–S50.

    PubMed  CAS  Google Scholar 

  38. Echtay KS, Winkler E, Klingenberg M. Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature 2000; 408:609–613.

    PubMed  CAS  Google Scholar 

  39. Echtay KS, Winkler E, Frischmuth K et al. Uncoupling proteins 2 and 3 are highly active H+ transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc Natl Acad Sci USA 2001; 98:1416–1421.

    PubMed  CAS  Google Scholar 

  40. Walter L, Miyoshi H, Leverve X et al. Regulation of the mitochondrial permeability transition pore by ubiquinone analogs, A progress report. Free Radic Res 2002; 36:405–412.

    PubMed  CAS  Google Scholar 

  41. Papucci L, Schiavone N, Witort E et al. Coenzyme Q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J Biol Chem 2003; 278:28220–28228.

    PubMed  CAS  Google Scholar 

  42. Kettawan A, Takahashi T, Kongkachuichai R et al. Protective effects of coenzyme q(10) on decreased oxidative stress resistance induced by simvastatin. J Clin Biochem Nutr 2007; 40(3): 194–202.

    PubMed  CAS  Google Scholar 

  43. Wood R, Ronnenberg AG. Iron 2006; 248–270. In: Shills MA et al. eds. Modern nutrition in health and disease. X edition. Lipincott 2006.

    Google Scholar 

  44. Miller NJ, Evans CA. Spectrophotometric determination of antioxidant activity. Redox Report 1996; 2:161–171.

    CAS  Google Scholar 

  45. Ishizaka N, Ishizaka Y, Toda E et al. Association between serum uric acid, metabolic syndrome and carotid atherosclerosis in Japanese individuals. Arterioscler Thromb Vasc Biol 2005; 25(5):1038–1044.

    PubMed  CAS  Google Scholar 

  46. Rodrigo R, Castello R, Carrasco R et al. Diminution of tissue lipid peroxidation in rats is related to the in vitro antioxidant capacity of wine. Life Sci 2005; 76:889–900.

    PubMed  CAS  Google Scholar 

  47. Gomez-Cabrera MC, Borras C, Pallardò FV et al. Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol 2005:113–120.

    Google Scholar 

  48. Otterbein LE, Soares MP, Yamashita K et al. Heme oxygenase-1:unleashing the protective properties of heme. Trends Immunol 2004; 24:449–455.

    Google Scholar 

  49. Stocker R, Yamamoto Y, McDonagh A et al. Bilirubin is antioxidant of possible physiological importance. Science 1987; 235:1043–1046.

    PubMed  CAS  Google Scholar 

  50. Clark JE, Foresti R, Sarathchandra P et al. Heme oxygenase-1-derived bilirubin ameliorates postischemic myocardial dysfunction. Am J Physiol Heart Circ Physiol 2000; 278:H643–H651.

    PubMed  CAS  Google Scholar 

  51. Foresti R, Sarathchandra P, Clark JE et al. Peroxynitrite induces haem oxygenase-1 in vascular endothelial cells: a link to apoptosis. Biochem J 1999; 339:729–736.

    PubMed  CAS  Google Scholar 

  52. Samb A, Taille C, Almolki A et al. Heme oxygenase modulates oxidant-signaled airway smooth muscle contractility: role of bilirubin. Am J Physiol Lung Cell Mol Physiol 2002; 283:L596–L603.

    PubMed  CAS  Google Scholar 

  53. Dore S, Snyder SH. Neuroprotective action of bilirubin against oxidative stress in primary hippocampal cultures. Ann NY Acad Sci 1999; 890:167–172.

    PubMed  CAS  Google Scholar 

  54. Baranano DE, Rao M, Ferris CD et al. Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci USA 2002; 99:16093–16098.

    PubMed  CAS  Google Scholar 

  55. Kato Y, Shimazu M, Kondo M et al. Bilirubin rinse: A simple protectant against the rat liver graft injury mimicking heme oxygenase-1 preconditioning. Hepatology 2003; 38:364–373.

    PubMed  CAS  Google Scholar 

  56. Adin CA, Croker BP, Agarwal A. Protective effects of exogenous bilirubin on ischemia-reperfusion injury in the isolated, perfused rat kidney. Am J Physiol Renal Physiol 2005; 288:F778–F784.

    PubMed  CAS  Google Scholar 

  57. Nakao A, Otterbein LE, Overhaus M et al. Biliverdin protects the functional integrity of a transplanted syngeneic small bowel. Gastroenterology 2004; 127:595–606.

    PubMed  CAS  Google Scholar 

  58. Kaur H, Hughes MN, Green CJ et al. Interaction of bilirubin and biliverdin with reactive nitrogen species. FEBS Lett 2003; 543:113–119.

    PubMed  CAS  Google Scholar 

  59. Hopkins PN, Wu LL, Hunt SC et al. Higher serum bilirubin is associated with decreased risk for early familial coronary artery disease. Arterioscler Thromb Vasc Biol 1996; 16:250–255.

    PubMed  CAS  Google Scholar 

  60. Temme EH, Zhang J, Schouten EG et al. Serum bilirubin and 10-year mortality risk in a Belgian population. Cancer Causes Control 2001; 12:887–894.

    PubMed  CAS  Google Scholar 

  61. Lanone S, Bloc S, Foresti R et al. Bilirubin decreases NOS2 expression via inhibition of NAD(P)H oxidase: implications for protection against endotoxic shocks in rats. FASEB J 2005; 19(13):1890–1892.

    PubMed  CAS  Google Scholar 

  62. Troughton J, Woodside JV, Young IA et al. Bilirubin and coronary heart disease risk in the Prospective Epidemiological Study of Myocardial Infraction (PRIME). Eur J Cardiovasc Prev Rehabil 2007; 14(1):79–84.

    PubMed  Google Scholar 

  63. Perlstein TS, Pande RL, Beckman JA et al. Serum total bilirubin level and prevalent lower-extremity peripheral arterial disease: National Health and Nutrition Examination Survey (NHANES) 1999 to 2004. Arterioscler Thromb Vasc Biol 2008; 28(1):166–172.

    PubMed  CAS  Google Scholar 

  64. Gullu H, Erdogan D, Tok D et al. High serum bilirubin concentrations preserve coronary flow reserve and coronary microvascular functions. Arterioscler Thromb Vasc Biol 2005; 25(11):2289–2294.

    PubMed  CAS  Google Scholar 

  65. Erdogan D, Gullu H, Yildirim E et al. Low serum bilirubin levels are independently and inversely related to impaired flow-mediated vasodilation and increased carotid intima-media thickness in both men and women. Atherosclerosis 2006; 184(2):431–437.

    PubMed  CAS  Google Scholar 

  66. Dohi K, Satoh K, Ohtaki H et al. Elevated plasma levels of bilirubin in patients with neurotrauma reflect its pathophysiological role in free radical scavenging in vivo. 2005; 19(5):855–860.

    CAS  Google Scholar 

  67. Shekeeb Shahab M, Kumar P, Sharma N et al. Evaluation of oxidant and antioxidant status in term neonates: a plausible protective role of bilirubin. Mol Cell Biochem 2008; 317(1–2):51–59.

    Google Scholar 

  68. Sedlak TW, Snyder SH. Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics 2004; 113(6): 1776–1782.

    PubMed  Google Scholar 

  69. Carpenè E, Andreani G, Isani G. Metallothionein functions and structural characteristics. J Trace Elem Med Biol 2007; 21(Suppl 1):35–39.

    PubMed  Google Scholar 

  70. http://www.expasy.org/cgi-bin/lists?metallo.txt.

  71. Li Y, Kimura T, Laity JH et al. The zinc-sensing mechanism of mouse MTF-1 involves linker peptides between the zinc fingers. Mol Cell Biol 2006; 26:5580–5587.

    PubMed  CAS  Google Scholar 

  72. Uchida Y. Growth inhibitory factor, metallothionein-like protein and neurodegenerative diseases. Biol Signals 1994; 3:211–215.

    PubMed  CAS  Google Scholar 

  73. Hussain W et al. Role of metallothionein and other antioxidants in scavenging superoxide radicals and their possible role in neuroprotection. Neurochem Int 1996; 29:145–152.

    PubMed  CAS  Google Scholar 

  74. Hwang YP, Kim HG, Han EH et al. Metallothionein-III protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a PI3K and ERK/Nrf2-dependent manner. Toxicol Appl Pharmacol 2008; 231(3):318–327.

    PubMed  CAS  Google Scholar 

  75. Gülçin I. Antioxidant and antiradical activities of L-carnitine. Life Sci 2006; 18: 78(8):803–811.

    PubMed  Google Scholar 

  76. Binienda ZK, Ali SF. Neuroprotective role of l-carnitine in the 3-nitropropionic acid induced neurotoxicity. Toxicology Letters 2001; 125:67–73.

    PubMed  CAS  Google Scholar 

  77. Kremser K, Stangl H, Pahan K et al. Nitric oxide regulates peroxisomal enzyme activities. Europane Journal of Clinic Chemisty and Clinic Biochemistry 1995; 33:763–774.

    CAS  Google Scholar 

  78. Dokmeci D, Inan M, Basaran UN et al. Protective effect of L-carnitine on testicular ischaemia-reperfusion injury in rats. Cell Biochem Funct 2007; 25(6):611–618.

    PubMed  CAS  Google Scholar 

  79. Lal A, Atamna W, Killilea DW et al. Lipoic acid and acetyl-carnitine reverse iron-induced oxidative stress in human fibroblasts. Redox Rep 2008; 13(1):2–10.

    PubMed  CAS  Google Scholar 

  80. McMackin CJ, Widlansky ME, Hamburg NM et al. Effect of combined treatment with alpha-Lipoic acid and acetyl-L-carnitine on vascular function and blood pressure in patients with coronary artery disease. J Clin Hypertens (Greenwich) 2007; 9(4):249–255.

    CAS  Google Scholar 

  81. Xie J, Zeng Q, Wang L. The protective effect of L-carnitine on ischemia-reperfusion heart. J Huazhong Univ Sci Technolog Med Sci 2006; 26(2): 188–191.

    PubMed  CAS  Google Scholar 

  82. Thangasamy T, Jeyakumar P, Sittadjody S et al. L-Carnitine mediates protection against DNA damage in lymphocytes of aged rats. Biogerontology 2009; 10(2):163–172.

    PubMed  CAS  Google Scholar 

  83. Calabrese V, Giuffrida Stella AM, Calvani M et al. Acetylcarnitine and cellular stress response: roles in nutritional redox homeostasis and regulation of longevity genes. J Nutr Biochem 2006; 17(2):73–88.

    PubMed  CAS  Google Scholar 

  84. Hardeland R, Poeggeler B. Nonvertebrate melatonin. J Pineal Res 2003; 34:233–234.

    PubMed  CAS  Google Scholar 

  85. Conway S, Drew JE, Mowat P et al. Chimeric melatonin mtl and melatonin-related receptors. Identification of domains and residues participating in ligand binding and receptor activation of the melatonin mtl receptor. J Biol Chem 2000; 275:20602–20609.

    PubMed  CAS  Google Scholar 

  86. Garcia-Maurino S, Pozo D, Calvo JR et al. Correlation between nuclear melatonin receptor expression and enhanced cytokine production in human lymphocytic and monocytic cell lines. J Pineal Res 2000; 29:129–137.

    PubMed  CAS  Google Scholar 

  87. Srinivasan V, Pandi-Perumal SR, Cardinali DP et al. Melatonin in Alzheimer’s disease and other neurodegenerative disorders. Behav Brain Funct 2006; 2–15.

    Google Scholar 

  88. Tan DX, Reiter RJ, Manchester LC et al. Chemical and physical properties and potential mechanism: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr Top Med Chem 2002; 2:181–197.

    PubMed  CAS  Google Scholar 

  89. Buyukavci M, Ozdemir O, Buck S et al. Melatonin cytotoxicity in human leukaemia cells: relation with its prooxidant effect. Fundam Clin Pharmacol 2006; 20:73–79.

    PubMed  CAS  Google Scholar 

  90. Rodriguez C, Mayo JC, Sainz RM et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 2004; 36:1–9.

    PubMed  CAS  Google Scholar 

  91. Anisimov SV, Popovic N. Genetic aspects of melatonin biology. Rev Neurosci 2004; 15:209–230.

    PubMed  CAS  Google Scholar 

  92. Reiter RJ, Acuna-Castroviejo D, Tan DX et al. Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system. Ann NY Acad Sci 2001; 939:200–215.

    PubMed  CAS  Google Scholar 

  93. Koh PO. Melatonin regulates nitric oxide synthase expression in ischemic brain injury. J Vet Med Sci 2008; 70(7):747–750.

    PubMed  CAS  Google Scholar 

  94. Garcia JJ, Reiter JR, Pie J et al. Role of pinoline and melatonin in stabilizing hepatic microsomal membranes against oxidative damage. J Bioenerg Biomen 1999; 31:609–616.

    CAS  Google Scholar 

  95. Karbownik MA, Reiter RJ. Antioxidative effects of melatonin in protection against cellular damage caused by ionizing radiation. Proc Soc Exp Biol Med 2000; 225:9–22.

    PubMed  CAS  Google Scholar 

  96. Lahiri DK, Ge YW, Sharman EH et al. Age-related changes in serum melatonin in mice: higher levels of combined melatonin and 6-hydroxymelatonin sulphate in the cerebral cortex than serum, heart, liver and kidney tissues. J Pineal Res 2004; 36:217–223.

    PubMed  CAS  Google Scholar 

  97. Sanchez-Moreno C, Dorfmann SE, Lichtestein AH et al. Dietary fat type affects vitamins C and E and biomarkers of oxidative status in peripheral and brain tissue of golden Syrian hamsters. J Nutr 2004; 134:655–660.

    PubMed  CAS  Google Scholar 

  98. Rousseau A, Petren S, Plannthin J et al. Serum and cerebrospinal fluid concentration of melatonin: a pilot study in healthy male volunteers. J Neural Transm 1999; 106:883–888.

    PubMed  CAS  Google Scholar 

  99. Filadelfi AM, Castrucci AM. Comparative aspects of the pineal melatonin system of poikilothermic vertebrates. J Pineal Res 1996; 20:175–186.

    PubMed  CAS  Google Scholar 

  100. Kotler M, Rodriguez C, Sainz RM et al. Melatonin increases gene expression for antioxidant enzymes in rat brain cortex. J Pineal Res 1998; 24:83–89.

    PubMed  CAS  Google Scholar 

  101. Berra B, Rizzo AM. Melatonin: circadian rhythm regulator, chronobiotic, antioxidant and beyond. Clinics in Dermatology 2008; 27(2):202–209.

    Google Scholar 

  102. Martin M, Macias G, Escames G et al. Melatonin-induced increased activity of the respiratory chain complexes I and IV can prevent mitochondrial damage induced by ruthenium red in vivo. J Pineal Res 2000; 28:242–248.

    PubMed  CAS  Google Scholar 

  103. Urata Y, Honma S, Goto S et al. Melatonin induces glutamylcysteine synthase mediated by activator protein-I in human vascular endothelial cells. Free Rad Biol Med 1999; 27:838–847.

    PubMed  CAS  Google Scholar 

  104. Yu BP, Chung HV. Adaptive mechanism to oxidative stress during aging. Mech Ageing Dev 2006; 127:436–443.

    PubMed  CAS  Google Scholar 

  105. Skene DJ, Swaab DF. Melatonin rhythmicity: effect of age and Alzheimer’s disease. Exp Gerontol 2003; 38:199–206.

    PubMed  CAS  Google Scholar 

  106. Swaab DF. The human hypothalamus basic and clinical aspects. Handbook of Clinical Neurology. Aminoff MJ, Francois B, Swaab DF series eds. Elsevier, Amsterdam 2003; 79:63–123.

    Google Scholar 

  107. Fourtillian JB, Brisson AM, Fourtillian M et al. Melatonin secretion occurs at a costant rate in both young and older men and women. Am J Physiol Endocrinol Metab 2001; 280:E11–E22.

    Google Scholar 

  108. Duffy JF, Zeitzer JM, Rimmer DW et al. Peak of circadian melatonin rhythm occurs later within the sleep of older subjects. Am J Physiol Endocrinol Metab 2002; 282:E297–E303.

    PubMed  CAS  Google Scholar 

  109. Lu F. Reactive oxygen species in cancer, too much or too little? Med Hypotheses 2007; 69(6): 1293–1298.

    PubMed  CAS  Google Scholar 

  110. Fruehauf JP, Meyskens FFL. Reactive oxygen species: A breath of life or death? Clin Cancer Res 2007; 13(3):789–794.

    PubMed  CAS  Google Scholar 

  111. Tuma S. Reactive oxygen species may have antitumor activity in metastatic melanoma. JNCI 2008; 100:11–12.

    PubMed  Google Scholar 

  112. Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82:47–95.

    PubMed  CAS  Google Scholar 

  113. Lee SR, Yang KS, Kwon J et al. Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 2002; 277:20336–20342.

    PubMed  CAS  Google Scholar 

  114. Adachi T, Weisbrod RM, Pimentel DR et al. S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 2004; 10:1200–1207.

    PubMed  CAS  Google Scholar 

  115. Adachi T, Pimentel DR, Heibeck T et al. S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells. J Biol Chem 2004; 27:29857–29862.

    Google Scholar 

  116. Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase. Role in cardiovascular biology and disease. Circ Res 2000; 86:494–501.

    PubMed  CAS  Google Scholar 

  117. Ushio-Fukai M. Alexander RW, Akers M et al. Reactive oxygen species mediate the activation of Akt/ protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 1999; 274:22699–22704.

    PubMed  CAS  Google Scholar 

  118. Forman HJ, Torres M, Fukuto J. Redox signaling. Mol Cell Biochem 2002; 234-235:49–62.

    PubMed  Google Scholar 

  119. Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 2001; 30:1191–1212.

    PubMed  CAS  Google Scholar 

  120. Xu D, Rovira II, Finkel T. Oxidants painting the cysteine chapel: redox regulation of PTPs. Dev Cell 2002; 2:251–252.

    PubMed  CAS  Google Scholar 

  121. Filomeni G, Rotilio G, Ciriolo MR. Cell signalling and the glutathione redox system. Biochem Pharmacol 2002; 64:1057–1064.

    PubMed  CAS  Google Scholar 

  122. Magder S. Reactive oxygen species: toxic molecules or spark of life? Critical Care 2006; 10:208–216.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rizzo, A.M. et al. (2010). Endogenous Antioxidants and Radical Scavengers. In: Giardi, M.T., Rea, G., Berra, B. (eds) Bio-Farms for Nutraceuticals. Advances in Experimental Medicine and Biology, vol 698. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7347-4_5

Download citation