Skip to main content

Overview of Diet-Gene Interactions and the Example of Xanthophylls

  • Chapter
Bio-Farms for Nutraceuticals

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 698))

Abstract

This chapter provides an overview of diet-gene interaction and the role of dietary factors in human health and disease. Human master control genes that regulate processes of fundamental importance, such as cell proliferation and the immune response, are introduced and their modulation by nutraceuticals, produced by plants and photosynthetic microbes, is reviewed. Emphasis is placed on antioxidants and polyunsaturated fatty acids as regulators of master control genes. Furthermore, a case study is presented on xanthophylls, a group of carotenoids with multiple health benefits in the protection against eye disease and other chronic diseases, as well as the synergism between xanthophylls and other dietary factors. Lastly, dietary sources of the xanthophylls zeaxanthin and lutein are reviewed and their enhancement via genetic engineering is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dalton TD, Shertzer HG, Puga A. Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol 1999; 39:67–101.

    Article  PubMed  CAS  Google Scholar 

  2. Allen RG, Tresini M. Oxidative stress and gene regulation. Free Radic Biol Med 2000; 28:463–499.

    Article  PubMed  CAS  Google Scholar 

  3. Maher P, Schubert D. Signaling by reactive oxygen species in the nervous system. Cell Mol Life Sci 2000; 57:1287–1305.

    Article  PubMed  CAS  Google Scholar 

  4. Shackelford RE, Kaufmann WK, Paules RS. Oxidative stress and cell cycle checkpoint function. Free Radic Biol Med 2000; 28:1387–1404.

    Article  PubMed  CAS  Google Scholar 

  5. Lavrovsky Y, Chatterjee B, Clark RA et al. Role of redox-regulated transcription factors in inflammation, aging and age-related diseases. Exp Gerontol 2000; 35:521–532.

    Article  PubMed  CAS  Google Scholar 

  6. Janssen-Heiniger YMW, Poynter ME, Baeuerle PA. Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappa B. Free Radic Biol Med 2000; 28:1317–1327.

    Article  Google Scholar 

  7. Nees M, Geoghegan JM, Hyman T et al. Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-kappa B-responsive genes in cervical keratinocytes. J Virol 2001; 75:4283–4296.

    Article  PubMed  CAS  Google Scholar 

  8. Pande V, Ramos MJ. Nuclear Factor Kappa B: a potential target for anti-HIV chemotherapy. Curr Med Chem 2003; 10:1603–1615.

    Article  PubMed  CAS  Google Scholar 

  9. Devadas K, Hardegen NJ, Wahl LM et al. Mechanisms for macrophage-mediated HIV-1 induction. J Immunol 2004; 173:6735–6744.

    PubMed  CAS  Google Scholar 

  10. Gasparian AV, Fedorova MD, Kisseljove FL. Regulation of matrix metalloproteinase-9 transcription in squamous cell carcinoma of uterine cervix: the role of human papillomavirus gene E2 expression and activation of transcription factor NF-kappa B. Biochemistry-Moscow 2007; 72:848–853.

    Article  PubMed  CAS  Google Scholar 

  11. Mukerjee R, Sawaya BE, Khalili K et al. Association of p65 and C/EBP beta with HIV-1 LTR modulates transcription of the viral promoter. J Cell Biochem 2007; 100:1210–1216.

    Article  PubMed  CAS  Google Scholar 

  12. Schreck R, Albermann K, Baeuerle PA. Nuclear factor kappa-B—an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Comm 1992; 17:221–237.

    Article  CAS  Google Scholar 

  13. Chen F, Shi XL. NF-kappa B, A pivotal transcription factor in silica-induced diseases. Mol Cell Biochem 2002; 234:169–176.

    Article  PubMed  Google Scholar 

  14. Flaherty DM, Monick MM, Carter AB et al. Oxidant-mediated increases in redox factor-1 nuclear protein and activator protein-1 DNA binding in asbestos-treated macrophages. J Immunol 2002; 168:5675–5681.

    PubMed  CAS  Google Scholar 

  15. Valko M, Morris H, Cronin MTD. Metals, toxicity and oxidative stress. Curr Med Chem 2005; 12:1161–1208.

    Article  PubMed  CAS  Google Scholar 

  16. Hirano F, Tanaka H, Miura T et al. Inhibition of NF-kappa B-dependent transcription of human immunodeficiency virus 1 promoter by a phosphodiester compound of vitamin C and vitamin E, EPC-K1. Immunopharmacology 1998; 39:31–38.

    Article  PubMed  CAS  Google Scholar 

  17. Garland M, Fawzi W. Antioxidants and progression of human immunodeficiency virus (HIV) disease. Nutr Res 1999; 19:1259–1276.

    Article  CAS  Google Scholar 

  18. Guiliano A. The Role of nutrients in the prevention of cervical dysplasia and cancer. Nutrition 2000; 16:570–573.

    Article  Google Scholar 

  19. Beniston RG, Campo MS. Quercetin elevates p27 (Kip1) and arrests both primary and HPV16 E6/E7 transformed human keratinocytes in G1. Oncogene 2003; 22:5504–5514.

    Article  PubMed  CAS  Google Scholar 

  20. Kaiser JD, Campa AM, Ondercin JP et al. Micronutrient supplementation increases CD4 count in HIV-infected individuals on highly active antiretroviral therapy: A prospective, double-blinded, placebo-controlled trial. J Acquir Immune Defic Syndr 2006; 42:523–528.

    Article  PubMed  CAS  Google Scholar 

  21. Yaqoob P. Fatty acids as gatekeepers of immune cell regulation. Trends Immunol 2003; 24:639–645.

    Article  PubMed  CAS  Google Scholar 

  22. Lapillonne A, Clarke SD, Heird WC. Polyunsaturated fatty acids and gene expression. Curr Opin Clin Nutr Metab Care 2004; 7:151–156.

    Article  PubMed  CAS  Google Scholar 

  23. Simopoulos AP. Omega-6/omega-3 essential fatty acid ratio and chronic disease. Food Rev Int 2004; 20:77–90.

    Article  CAS  Google Scholar 

  24. Simopoulos AP. Omega-3 fatty acids and cancer. Indoor Built Environ 2003; 12:405–412.

    Article  CAS  Google Scholar 

  25. Simopoulos AP. The omega-6/omega-3 fatty acid ratio, genetic variation and cardiovascular disease. Asia Pac J Clin Nutr 2008; 17:131–134.

    PubMed  CAS  Google Scholar 

  26. Haag M, Dippenaar NG. Dietary fats, fatty acids and insulin resistance: short review of a multifaceted connection. Med Sci Mon 2005; 11:RA359–RA367.

    CAS  Google Scholar 

  27. Blaschke F, Takata Y, Caglayan E et al. Obesity, peroxisome proliferator-activated receptor and atherosclerosis in type 2 diabetes. Arteroscler Thromb Vasc Biol 2006; 26:28–40.

    Article  CAS  Google Scholar 

  28. Richardson AJ, Ross MA. Fatty acid metabolism in neurodevelopmental disorder: a new perspective on associations between attention-deficit/hyperactivity disorder, dyslexia, dyspraxia and the autistic spectrum. Prostaglandins Leukot Essent Fatty Acids 2000; 63:1–9.

    Article  PubMed  CAS  Google Scholar 

  29. Young G, Conquer J. Omega-3 fatty acids and neuropsychiatric disorders. Reprod Nutr Dev 2004; 45:1–28.

    Article  Google Scholar 

  30. Wainwright PE. Dietary essential fatty acids and brain function: a developmental perspective on mechanisms. Proc Nutr Soc 2002; 61:61–69.

    Article  PubMed  CAS  Google Scholar 

  31. Warner K, Knowlton S. Frying quality and oxidative stability of high-oleic corn oils. J Am Oil Chem Soc 1997; 74:1317–1322.

    Article  CAS  Google Scholar 

  32. Forster VA. Genetically modified crop approvals and planted acreages. Crop Biotechnol 2002; 829:17–22.

    Article  CAS  Google Scholar 

  33. Liu Q, Singh SP, Green AG. High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated posttranscriptional gene silencing. Plant Physiol 2002; 129:1732–1743.

    Article  PubMed  CAS  Google Scholar 

  34. Liu Q, Singh S, Green A. High-oleic and high-stearic cottonseed oils: Nutritionally improved cooking oils developed using gene silencing. J Am Coll Nutr 2002; 21:205S–211S.

    PubMed  CAS  Google Scholar 

  35. Smith SA, King RE, Min DB. Oxidative and thermal stabilities of genetically modified high oleic sunflower oil. Food Chem 2007; 102:1208–1213.

    Article  CAS  Google Scholar 

  36. Tran E, Demmig-Adams B. Vitamins and minerals: Powerful medicine or potent toxins? Nutr Food Sci 2007; 37:50–60.

    Article  Google Scholar 

  37. Ellinger S, Ellinger J, Stehle P. Tomatoes, tomato products and lycopene in the prevention and treatment of prostate cancer: do we have the evidence from intervention studies? Curr Opin Clin Nutr Metab Care 2006; 9:722–727.

    Article  PubMed  Google Scholar 

  38. Mares-Perlman JA, Millen AE, Ficek TL et al. The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease. Overview. J Nutr 2002; 132:518S–524S.

    Google Scholar 

  39. Seddon JM, Ajani UA, Sperduto RD et al. Dietary carotenoids, vitamin A, vitamin C and vitamin E and advanced age-related macular degeneration. J Am Med Assoc 1994; 272:1413–1420.

    Article  CAS  Google Scholar 

  40. Chasan-Taber L Willett WC, Seddon JM et al. A prospective study of carotenoid and vitamin A intakes and risk of cataract extraction in US women. Am J Clin Nutr 1999; 70:509–516.

    PubMed  CAS  Google Scholar 

  41. Brown L, Rimm EB, Seddon JM et al. A prospective study of carotenoid intake and risk of cataract extraction in US men. Am J Clin Nutr 1999; 70:517–524.

    PubMed  CAS  Google Scholar 

  42. Demmig-Adams B, Adams WW III. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci 1996; 1:21–26.

    Article  Google Scholar 

  43. Demmig-Adams B, Adams WW III. Photoprotection in an ecological context: the remarkable complexity of thermal dissipation. New Phytol 2006; 172:11–21. <doi: 10.1111/j.l469-8137.2006.01835

    Article  PubMed  CAS  Google Scholar 

  44. Demmig-Adams B, Adams WW III. Antioxidants in photosynthesis and human nutrition. Science 2002; 298:2149–2153.

    Article  PubMed  CAS  Google Scholar 

  45. Külheim C, Agren J, Jansson S. Rapid regulation of light harvesting and plant fitness in the field. Science 2002; 297:91–93.

    Article  PubMed  Google Scholar 

  46. Holt NE, Zigmantas D, Valkunas L et al. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 2005; 307:433–436.

    Article  PubMed  CAS  Google Scholar 

  47. Ahn TK, Avenson TJ, Ballottari M et al. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 2008; 320:794–797.

    Article  PubMed  CAS  Google Scholar 

  48. Pogson BJ, Niyogi KK, Björkman O et al. Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc Natl Acad Sci USA 1998; 95:13324–13329.

    Article  PubMed  CAS  Google Scholar 

  49. Havaux M, Niyogi KK. The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc Natl Acad Sci USA 1999; 96:8762–8767.

    Article  PubMed  CAS  Google Scholar 

  50. Havaux M, Dall’Osto L, Cuine S et al. The effect of zeaxanthin as the only xanthophyll on the structure and function of the photosynthetic apparatus in Arabidopsis thaliana. J Biol Chem 2004; 279:13878–13888.

    Article  PubMed  CAS  Google Scholar 

  51. Sajilata MG, Singhal RS, Kamat MY. The carotenoid pigment zeaxanthin—A review. Compr Rev Food Sci Food Saf 2008; 7:29–49.

    Article  CAS  Google Scholar 

  52. Thomson LR, Toyoda Y, Langner A et al. Elevated retinal zeaxanthin and prevention of light-induced photoreceptor cell death in quail. Investig Ophthalmol Vis Sci 2002; 43:3538–3549.

    Google Scholar 

  53. Thomson LR, Toyoda Y, Delori FC et al. Long term dietary supplementation with zeaxanthin reduces photoreceptor death in light-damaged Japanese quail. Exp Eye Res 2002; 75:529–542.

    Article  PubMed  CAS  Google Scholar 

  54. Sumatran VN, Zhang R, Lee DS et al. Differential regulation of apoptosis in normal versus transformed mammary epithelium by lutein and retinoic acid. Canc Epidemiol Biomarkers Prev 2000; 9:257–263.

    Google Scholar 

  55. Müller K, Carpenter KLH, Challis IR et al. Carotenoids induce apoptosis in the T-lymphoblast cell line Jurkat E6.1. Free Radic Res 2002; 36:791–802.

    Article  PubMed  Google Scholar 

  56. Chew BP, Brown CM, Park JS et al. Dietary lutein inhibits mouse mammary tumor growth by regulating angiogenesis and apoptosis. Anticancer Res 2003; 23:3333–3339.

    PubMed  CAS  Google Scholar 

  57. Chitchumroonchokchai C, Bomser JA, Glamm JE et al. Xanthophylls and α-tocopherol decrease UVB-induced lipid peroxidation and stress signalling in human lens epithelial cells. J Nutr 2004; 134:3225–3232.

    PubMed  CAS  Google Scholar 

  58. Wrona M, Korytowksi W, Ròzanowska M et al. Cooperation of antioxidants in protection against photosensitized oxidation. Free Radic Biol Med 2003; 35:1319–1329.

    Article  PubMed  CAS  Google Scholar 

  59. Wrona M, Ròzanowska M, Sarna T. Zeaxanthin in combination with ascorbic acid or alpha-tocopherol protects APRE-19 cells against photosensitized peroxidation of lipids. Free Radic Biol Med 2004; 36:1094–1101.

    Article  PubMed  CAS  Google Scholar 

  60. Youdim KA, Spencer JPE, Schroeter H et al. Dietary flavonoids as potential neuroprotectants. Biol Chem 2002; 383:503–519.

    Article  PubMed  CAS  Google Scholar 

  61. Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Canc 2003; 3:768–780.

    Article  CAS  Google Scholar 

  62. Seo T, Blaner WS, Deckelbaum RJ. Omega-3 fatty acids: molecular approaches to optimal biological outcomes. Curr Opin Lipidol 2005; 16:11–18.

    Article  PubMed  CAS  Google Scholar 

  63. Maccarrone M, Bari M, Gasperi V et al. The photoreceptor protector zeaxanthin induces cell death in neuroblastoma cells. Anticancer Res 2005; 25:3871–3876.

    PubMed  CAS  Google Scholar 

  64. Yamamoto HY. Biochemistry of the violaxanthin cycle in higher plants. Pure Appl Chem 1979; 51:639–648.

    Article  CAS  Google Scholar 

  65. Demmig-Adams B. Linking the xanthophyll cycle with photoprotective energy dissipation. Photosynth Res 2003; 76:73–80.

    Article  PubMed  CAS  Google Scholar 

  66. Landrum JT, Bone RA. Lutein, zeaxanthin and the macular pigment. Arch Biochem Biophys 2001; 385:28–40.

    Article  PubMed  CAS  Google Scholar 

  67. Niyogi KK. Safety valves for photosynthesis. Curr Opin Plant Biol 2000; 3:455–460.

    Article  PubMed  CAS  Google Scholar 

  68. Dharmapuri S, Rosati C, Pallara P et al. Metabolic engineering of xanthophyll content in tomato fruits. FEBS Lett 2002; 519:30–34.

    Article  PubMed  CAS  Google Scholar 

  69. Romer S, Lubeck J, Kauder F et al. Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and cosuppression of carotenoid epoxidation. Metab Eng 2002; 4:263–272.

    Article  PubMed  CAS  Google Scholar 

  70. Albrecht M, Misawa N, Sandmann G. Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids beta-carotene and zeaxanthin. Biotechnol Lett 1999; 21:791–795.

    Article  CAS  Google Scholar 

  71. de Oliveira GPR, Rodriguez-Amaya DB. Processed and prepared corn products as sources of lutein and zeaxanthin: Compositional variation in the food chain. J Food Sci 2007; 72:S079–S085.

    Article  PubMed  Google Scholar 

  72. Daicker B, Schiedt K, Adnet JJ et al. Canthaxanthin retinophathy—an investigation by light and electron-microscopy and physicochemical analysis. Graefes Arch Clin Exp Ophthalmol 1987; 225:189–197.

    Article  PubMed  CAS  Google Scholar 

  73. Stewart G. Investigating the effect of diet on nutrient concentration in eggs: How your breakfast might be healthier than you think. Inquiry (The University of New Hampshire) 2007: <http://www.unh.edu/inquiryjournal/07/articles/stewart.html

  74. Wang YM, Conner SL, Wang W et al. The selective retention of lutein, meso-zeaxanthin and zeaxanthin in the retina of chicks fed a xanthophyll-free diet. Exp Eye Res 2007; 84:591–598.

    Article  PubMed  CAS  Google Scholar 

  75. McGraw KJ, Beebee MD, Hill GE et al. Lutein-based plumage coloration in songbirds is a consequence of selective pigment incorporation into feathers. Comp Biochem Physiol B Biochem Mol Biol 2003; 135:689–696.

    Article  PubMed  CAS  Google Scholar 

  76. Moller AP, Biard C, Blount JD et al. Carotenoid-dependent signals: Indicators of foraging efficiency, immunocompetence or detoxification ability? Avian Poultry Biol Rev 2000; 11:137–159.

    Google Scholar 

  77. Kim HW, Chew BP, Wong TS et al. Dietary lutein stimulates immune response in the canine. Vet Immunol Immunopathol 2000; 74:315–327.

    Article  PubMed  CAS  Google Scholar 

  78. Kim HW, Chew BP, Wong TS et al. Modulation of humoral and cell-mediated immune responses by dietary lutein in cats. Vet Immunol Immunopathol 2000; 74:331–341.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Demmig-Adams, B., Adams, W.W. (2010). Overview of Diet-Gene Interactions and the Example of Xanthophylls. In: Giardi, M.T., Rea, G., Berra, B. (eds) Bio-Farms for Nutraceuticals. Advances in Experimental Medicine and Biology, vol 698. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7347-4_2

Download citation

Publish with us

Policies and ethics