Skip to main content

The NUTRA-SNACKS Project: Basic Research and Biotechnological Programs on Nutraceutics

  • Chapter
Bio-Farms for Nutraceuticals

Abstract

The Nutra-Snacks project aims at creating novel high quality ready-to-eat foods with functional activity, useful for promoting public health. The team is composed of seven research institutes and three SMEs from different countries whose activities span from basic to applied research providing the right technological transfer to small and medium industries involved in the novel food production chain. Strategic objectives include the application of plant cell and in vitro culture systems to create very large amounts of high-value plant secondary metabolites with recognized anticancer, antilipidemic, anticholesterol, antimicrobial, antiviral, antihypertensive and anti-inflammatory properties and to include them in specific food products. To this end, the screening of a vast number of working organisms capable of accumulating the desired compounds and the characterization of their expression profiles represent fundamental steps in the research program. The information allows the identification of plant species hyper-producing metabolites and selection of those metabolites capable of specifically counteracting the oxidative stress that underlies the development of important pathologies and diseases. In addition, devising safe metabolite extraction procedures is also crucial in order to provide nutraceutical-enriched extracts compatible with human health. New biotechnological approaches are also undertaken including the exploitation of photosynthetic algal strains in bio-farms to enhance the synthesis of antioxidant compounds and the design of novel bioreactors for small and large scale biomass production. Further outstanding objectives include the development of (i) safety and quality control protocols (ii) biosensor techniques for the analysis of the emerging ready-to-eat food and (iii) a contribution to define a standard for new regulations on nutraceutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Valko M, Leibfritz D, Moncol J et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39:44–84.

    Article  PubMed  CAS  Google Scholar 

  2. Mattson MP. Awareness of hormesis will enhance future research in basic and applied neuroscience. Crit Rev Toxicol 2008; 38:633–639.

    Article  PubMed  CAS  Google Scholar 

  3. Singh U, Jialal I. Oxidative stress and atherosclerosis. Pathophysiology 2006; 13:129–142.

    Article  PubMed  CAS  Google Scholar 

  4. Ward NC, Croft KD. Hypertension and oxidative stress. Clin Exp Pharmacol Physiol 2006; 33:872–876.

    Article  PubMed  CAS  Google Scholar 

  5. Pacher P, Szabo C. Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. Am J Pathol 2008; 173:2–13.

    Article  PubMed  CAS  Google Scholar 

  6. Benz CC, Yau CA. Oxidative stress and cancer: paradigms in parallax. Nat Rev Cancer 2008; 8:875–879.

    Article  PubMed  CAS  Google Scholar 

  7. Manos J, Arthur J, Rose B, Bell S et al. Gene expression characteristics of a cystic fibrosis epidemic strain of Pseudomonas aeruginosa during biofilm and planktonic growth. FEMS Microbiol Lett 2009; 292:107–114.

    Article  PubMed  CAS  Google Scholar 

  8. Maritim AC, Sanders RA, Watkins JB 3rd. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 2003; 17:24–38.

    Article  PubMed  CAS  Google Scholar 

  9. Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Rev Neurosci 2004; 5:S18–S25.

    Article  Google Scholar 

  10. Trachootham D, Lu W, Ogasawara MA et al. Redox regulation of cell survival. Antioxid Redox Signal 2008;10:1343–1374.

    Article  PubMed  CAS  Google Scholar 

  11. Spitz DR, Azzam EI, Li JJ, Gius D. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: A unifying concept in stress response biology. Cancer Metastasis Rev 2004; 23:311–322.

    Article  PubMed  CAS  Google Scholar 

  12. Fialkow L, Wang Y, Downey GP. Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radic Biol Med 2007; 42:153–164.

    Article  PubMed  CAS  Google Scholar 

  13. D’Autréaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 2007; 8:813–824.

    Article  PubMed  Google Scholar 

  14. Baran CP, Zeigler MM, Tridandapani SM et al. The role of ROS and RNS in regulating life and death of blood monocytes. Curr Pharm Des 2004; 10:855–866.

    Article  PubMed  CAS  Google Scholar 

  15. Moran LK, Gutteridge JMC, Quinlan GJ. Thiols in cellular redox signalling and control. Curr Med Chem 2001; 8:763–772.

    PubMed  CAS  Google Scholar 

  16. Lesgards J-F, Durand P, Lassarre M et al. Assessment of lifestyle effects on the overall antioxidant capacity of healthy subjects. Environ Health Perspect 2002; 110:479–486.

    Article  PubMed  Google Scholar 

  17. Vattem DA, Ghaedian R, Shetty K. Enhancing health benefits of berries through phenolic antioxidant enrichment: focus on cranberry. Asia Pac J Clin Nutr 2005; 14:120–130.

    PubMed  CAS  Google Scholar 

  18. Singh B, Bhat TK, Singh B. Potential therapeutic applications of some antinutritional plant secondary metabolites. J Agric Food Chem 2003; 51:5579–5597.

    Article  PubMed  CAS  Google Scholar 

  19. Tran E, Demmig-Adams B. Vitamins and minerals: Powerful medicine or potent toxins? Nutr Food Sci 2007; 37:50–60.

    Article  Google Scholar 

  20. Bouvier F, Rahier A, Camara B. Biogenesis, molecular regulation and function of plant isoprenoids. Prog Lipid Res 2005; 44:357–429.

    Article  PubMed  CAS  Google Scholar 

  21. Miller NJ, Sampson J, Candeias LP et al. Antioxidant activities of carotenes and xanthophylls. FEBS Lett 1996; 384:240–242.

    Article  PubMed  CAS  Google Scholar 

  22. Mares-Perlman JA, Millen AE, Ficek TL et al. The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease. Overview. J Nutr 2002; 132:518S–524S.

    PubMed  Google Scholar 

  23. Scalbert A, Manach C, Morand C et al. Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 2005; 45:287–306.

    Article  PubMed  CAS  Google Scholar 

  24. Wahle KWJ, Rotondo D, Heys SD. Plant phenolics in the prevention and treatment of cancer, this volume.

    Google Scholar 

  25. Moriarty RM, Naithani R, Surve B. Organosulfur compounds in cancer chemoprevention. Mini Rev Med Chem 2007; 7:827–838.

    Article  PubMed  CAS  Google Scholar 

  26. Nagini S. Cancer chemoprevention by garlic and its organosulfur compounds-panacea or promise? Anticancer Agents Med Chem 2008; 8:313–321.

    Article  PubMed  CAS  Google Scholar 

  27. Touloupakis E, Ghanotakis D F. Nutraceutical use of garlic, this volume.

    Google Scholar 

  28. Del Bano MJ, Lorente J, Castillo J. Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. J Agric Food Chem 2003; 51:4247–4253.

    Article  PubMed  Google Scholar 

  29. Kintzios S, Makri O, Panagiotopoulos E et al. In vivo rosmarinic acid accumulation in sweet basil (Ocimum Basilicum l.). Biotechnol Lett 2003; 25:405–408.

    Article  PubMed  CAS  Google Scholar 

  30. Lee BJ, Hendricks DG. Antioxidant effects of L-carnosine on liposomes and beef homogenates. J Food Sci 1997; 62:931–934.

    Article  CAS  Google Scholar 

  31. Gao LP, Wei HL, Zhao HS et al. Antiapoptotic and antioxidant effects of rosmarinic acid in astrocytes. Pharmazie 2005; 60:62–65.

    PubMed  CAS  Google Scholar 

  32. Estrada LD, Soto C. Disrupting β-amyloid aggregation for alzheimer disease treatment. Curr Topics Medl Chem 2007; 7:115–126.

    Article  CAS  Google Scholar 

  33. Rivière C, Richard T, Vitrac X et al. New polyphenols active on β-amyloid aggregation. Bioorg Med Chem Lett 2008; 18:828–831.

    Article  PubMed  Google Scholar 

  34. Tepe B. Antioxidant potentials and rosmarinic acid levels of the methanolic extracts of Salvia virgata (Jacq), Salvia staminea (Montbret & Aucher ex Bentham) and Salvia verbenaca (L.) from Turkey. Bioresour Technol 2008; 99:1584–1588.

    Article  PubMed  CAS  Google Scholar 

  35. Lo C, Le Blanc JCY, Yu CKY et al. Detection, characterization, and quantification of resveratrol glycosides in transgenic arabidopsis over-expressing a sorghum stilbene synthase gene by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 2007; 21:4101–4108.

    Article  PubMed  CAS  Google Scholar 

  36. Prokop J, Abrman P, Seligson AL et al. Resveratrol and its glycon piceid are stable polyphenols. J Med Food 2006; 9:11–14.

    Article  PubMed  CAS  Google Scholar 

  37. Hao HD, He LR. Mechanisms of cardiovascular protection by resveratrol. J Med Food 2004; 7:290–298.

    Article  PubMed  CAS  Google Scholar 

  38. Klinge CM, Wickramasinghe NS, Ivanova MM, Dougherty SM. Resveratrol stimulates nitric oxide production by increasing estrogen receptor-Src-caveolin-1 interaction and phosphorylation in human umbilical vein endothelial cells. FASEB 2008; 22:2185–2197.

    Article  CAS  Google Scholar 

  39. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC. Multiple biological activities of curcumin: a short review. Life Sci 2006; 78:2081–2087.

    Article  PubMed  CAS  Google Scholar 

  40. Lopez-Lazaro M. Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res 2008; 52:S103–S127.

    PubMed  Google Scholar 

  41. Elias RJ, Kellerby SS, Decker EA. Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr 2008; 48:430–441.

    Article  PubMed  CAS  Google Scholar 

  42. Atmaca G. Antioxidant effects of sulfur-containing amino acids. Yonsei Med J 2004; 45:776–788.

    PubMed  CAS  Google Scholar 

  43. Rajapakse N, Mendis E, Jung WK et al. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res Int 2005; 38:175–182.

    Article  CAS  Google Scholar 

  44. Rajapakse N, Mendis E, Byun H et al. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. J Nutr Biochem 2005; 16:562–569.

    Article  PubMed  CAS  Google Scholar 

  45. Mendis E, Rajapakse N, Byun H-G et al. Investigation of jumbo squid (Dosidicus gigas) skin gelatine peptides for their in vitro antioxidant effects. Life Sci 2005; 77:2166–2178.

    Article  PubMed  CAS  Google Scholar 

  46. Chen HM, Muramoto K, Yamauchi F, et al. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J Agric Food Chem 1998; 46:49–53.

    Article  PubMed  CAS  Google Scholar 

  47. Kitts DD, Weiler KA. Bioactive proteins and peptides from food sources: applications of bioprocesses used in isolation and recovery. Curr Pharm Des 2003; 9:1309–1323.

    Article  PubMed  CAS  Google Scholar 

  48. Davies KM. Plant Colour and Fragrance. In: Verpoorte R, Alfermann AW, eds. Metabolic Engineering of Plant Secondary Metabolism. Dortrecht: Kluwer Academic Publishers, 2000:127–163.

    Google Scholar 

  49. Oksman-Caldentey KM, Arroo R. Regulation of tropane alkaloid metabolism in plants an plant cell cultures. In: Verpoorte R, Alfermann AW, eds. Metabolic Engineering of Plant Secondary Metabolism. Dortrecht: Kluwer Academic Publishers, 2000:253–281.

    Google Scholar 

  50. Verpoorte R, van der Heijden R, ten Hoopen HJG et al. Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol Lett 1999; 21:467–479.

    Article  CAS  Google Scholar 

  51. Ferrari S. Biological elicitors of plant secondary metabolites: mode of action and use in the production of Nutraceutics, this volume.

    Google Scholar 

  52. Hain R, Grimmig B. Modification of plant secondary metabolism by genetic engineering. In: Verpoorte R, Alfermann AW, eds. Metabolic Engineering of Plant Secondary Metabolism. Dortrecht: Kluwer Academic Publishers, 2000:217–231.

    Google Scholar 

  53. De Luca V. Metabolic engineering of crops with the tryptophan decarboxylase of catharanthus roseus. In: Verpoorte R, Alfermann AW, eds. Metabolic Engineering of Plant Secondary Metabolism. Dortrecht: Kluwer Academic Publishers, 2000:179–194.

    Google Scholar 

  54. Johanningmeier U, Fischer D. Perspective for the use of genetic transformants in order to enhance the synthesis of the desired metabolites. Engineering chloroplasts of microalgae: application to nutraceutical technology, this volume.

    Google Scholar 

  55. Krzyzanowska J, Czubacka A, Oleszek W. Dietary phytochemicals and human health, this volume.

    Google Scholar 

  56. Cahoon EB, Hall SE, Ripp KG et al. Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nature Biotechnol 2003; 21:1082–1087.

    Article  CAS  Google Scholar 

  57. Burba JL, Portela JA, Lanzavechia S. Argentine garlic I: a wide offer of clonal cultivars. Acta Horticulturae 2005; 688:291–296.

    Google Scholar 

  58. Fiamegos CG N, Vervoort J, Stalikas CD. Analytical procedure for the in-vial derivatization-extraction of phenolic acids and flavonoids in methanolic and aqueous plant extracts followed by gas chromatography with mass-selective detection. J Chromatogr A 2004; 1041:11–18.

    Article  PubMed  CAS  Google Scholar 

  59. Romani A, Vignolini P, Galardi C et al. Polyphenolic content in different plant parts of soy cultivars grown under natural conditions. J Agric Food Chem 2003; 51:5301–5306.

    Article  PubMed  CAS  Google Scholar 

  60. Vagi E, Rapavi E, Hadolin M, Peredi KV et al. Phenolic and triterpenoid antioxidants from Origanum majorana L. herb and extracts obtained with different solvents. J Agric Food Chem 2005; 53:17–21.

    Article  PubMed  CAS  Google Scholar 

  61. Kruk J, Mysliwa-Kurdziel B, Jemioła-Rzemińska M et al. Fluorescence lifetimes study of α-tocopherol and biological prenylquinols in organic solvents and model membranes. Photochem Photobiol 2006; 82:1309–1314.

    Article  PubMed  CAS  Google Scholar 

  62. Jahns P, Depka B, Trebst A. Xanthophyll cycle mutants from Chlamydomonas reinhardtii indicate a role for zeaxanthin in the D1 protein turnover. Plant Physiol Biochem 2000; 38:371–376.

    Article  CAS  Google Scholar 

  63. Yongyue S, Shufen L, Can Q. Solubility of ferulic acid and tetramethylpyrazine in supercritical carbon dioxide. J Chem Eng Data 2005; 50:1125–1128.

    Article  Google Scholar 

  64. Aziz A, Heyraud A, Lambert B. Oligogalacturonide signal transduction, induction of defense-related responses and protection of grapevine against Botrytis cinerea. Planta 2004; 218:767–774.

    Article  PubMed  CAS  Google Scholar 

  65. Ferrari S, Denoux C, Galletti R et al. Resistance to Botrytis cinerea induced in Arabidopsis thaliana by elicitors is independent of salicylic acid, ethylene or jasmonate signaling but requires PAD3. Plant Physiol 2007; 144:367–379.

    Article  PubMed  CAS  Google Scholar 

  66. Ramachandra Rao S, Ravishankar GA. Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 2002; 20:101–153.

    Article  Google Scholar 

  67. Savitha BC, Thimmaraju R, Bhagyalakshmi N et al. Different biotic and abiotic elicitors influence betalain production in hairy root cultures of Beta vulgaris in shake-flask and bioreactor. Process Biochem 2006; 41:50–60.

    Article  CAS  Google Scholar 

  68. Pistelli L, Giovannini A, Bertoli A et al. Hairy root cultures for secondary metabolites production, this volume.

    Google Scholar 

  69. Ruffoni B, Pistelli L, Bertoli A et al. Plant cell cultures: bioreactors for industrial production, this volume.

    Google Scholar 

  70. He P, Duncan J, Barber J. Astaxanthin accumulation in the green alga Haematococcus pluvialis: effects of cultivation parameters. J Integr Plant Biol 2007; 49:447–451.

    Article  CAS  Google Scholar 

  71. Korhonen H, Pihlanto A. Food-derived bioactive peptides-opportunities for designing future foods. Curr Pharm Des 2003; 9:1297–1308.

    Article  PubMed  CAS  Google Scholar 

  72. Korhonen H, Pihlanto A. Bioactive peptides: production and functionality. Int Dairy J 2006; 16:945–960.

    Article  CAS  Google Scholar 

  73. Hartmann R, Meisel H. Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol 2007;18:163–169.

    Article  PubMed  CAS  Google Scholar 

  74. Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 2004; 65:635–648.

    Article  PubMed  CAS  Google Scholar 

  75. Walker TL, Purton S, Becker DK et al. Microalgae as bioreactors. Plant Cell Rep 2005; 24:629–641.

    Article  PubMed  CAS  Google Scholar 

  76. Spolaore P, Joannis-Cassan C, Duran E et al. Commercial applications of microalgae. J Biosci Bioeng 2006; 101:87–96.

    Article  PubMed  CAS  Google Scholar 

  77. Manuell AL, Beligni MV, Elder JH et al. Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnol J 2007; 5:402–412.

    Article  PubMed  CAS  Google Scholar 

  78. Litescu SC, Eremia S. Methods for antioxidant capacity determination from food and raw materials, this volume.

    Google Scholar 

  79. Lavecchia T, Tibuzzi A, Giardi MT. Biosensors for functional food safety and analysis, this volume.

    Google Scholar 

  80. Giunta R, Basile G and Tibuzzi A. Legislation on nutraceuticals and food supplements: a comparison between regulations in United States and European Union, this volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rea, G., Antonacci, A., Lambreva, M., Margonelli, A., Ambrosi, C., Giardi, M.T. (2010). The NUTRA-SNACKS Project: Basic Research and Biotechnological Programs on Nutraceutics. In: Giardi, M.T., Rea, G., Berra, B. (eds) Bio-Farms for Nutraceuticals. Advances in Experimental Medicine and Biology, vol 698. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7347-4_1

Download citation

Publish with us

Policies and ethics