Thin Chips for Power Applications

  • Kurt Aigner
  • Oliver Häberlen
  • Herbert Hopfgartner
  • Thomas Laska


Thin chips for power applications are the key enabler for energy efficiency. This chapter will view low voltage metal oxide semiconductor field effect transistors (MOSFETs), IGBTs (insulated gate bipolar transistors) and FWDs (free wheeling diodes). For these the trend to ultra-thin power transistor chips (20 μm thickness) and the resulting electrical and thermal benefits by chip thickness reduction is described. Further the influence of thin chips on product definition and application especially for automotive smart power devices is pointed out. Thin chips technology for power applications allow an increase in efficiency and new packaging processes of semiconductor devices. The application benefits include reduced area requirements for the same performance and new packaging processes.


Semiconductor Device Electric Drive Switching Loss Insulate Gate Bipolar Transistor Product Definition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Siemieniec R, Hirler F, Schlögl A, Rösch M, Soufi-Amlashi N, Ropohl J, Hiller U (2006) A new and rugged 100 V power MOSFET. In: Proceedings of the 12th international EPE-PEMC 2006, Portoroz, Slovenia, pp 32–37Google Scholar
  2. 2.
    Siemieniec R, Häberlen O, Sánchez J (2009) Leistungs-MOSFETs im Niederspannungsbereich – Wege zu mehr Effizienz. Design & Elektronik 9:10–11Google Scholar
  3. 3.
    Stengl JP, Tihanyi J (1992) Leistungs-MOS-FET-Praxis. Pflaum Verlag, München, GermanyGoogle Scholar
  4. 4.
    Görgens L, Siemieniec R, Sánchez J (2006) MOSFET technology as a key for high power density converters. In: Proceedings of the 12th EPE-PEMC 2006, Portoroz, SloveniaGoogle Scholar
  5. 5.
    Baliga BJ (1987) Modern power devices. Wiley, New YorkGoogle Scholar
  6. 6.
    Lutz J (2006) Halbleiter-Leistungsbauelemente. Springer, BerlinGoogle Scholar
  7. 7.
    Miller G, Sack J (1989) A new concept for a non punch through IGBT with MOSFET like switching characteristics. In: 20th annual IEEE PESC’ 89 Record, Milwaukee, WI, pp 21–25Google Scholar
  8. 8.
    Laska T, Miller G (1990) A 2000 V non-punch-through-lGBT with dynamical properties like a 1000 V IGBT. In: IEDM 90, Abstract 32.6, pp. 807–810Google Scholar
  9. 9.
    Mauder A et al (2000) The field stop IGBT concept and Emcon high efficiency diode. In: Proceedings of the PCIM USAGoogle Scholar
  10. 10.
    Burns D et al (1996) NPT-IGBT-optimizing for manufacturability. In : Proceedings of the 8th ISPSD, Maui, HI, pp 331–334Google Scholar
  11. 11.
    Laska T et al (2000) The field stop IGBT (FS IGBT) – a new power device concept with a great improvement potential. In: Proceedings of the 12th ISPSD, Toulouse , France, pp 355–358Google Scholar
  12. 12.
    Rüthing H et al (2003) 600 V-IGBT3: trench field stop technology in 70 μm ultra-thin wafer technology. In: Proceedings of the 15th ISPSD, Cambridge, pp 66–69Google Scholar
  13. 13.
    Bayerer R (2008) Higher junction temperature in power modules – a demand from hybrid cars, a potential for the next step increase in power density for various variable speed drives. In: Proceedings of the PCIM Europe 2008, Nurnberg, GermanyGoogle Scholar
  14. 14.
    Gutt T et al (2006) Laser thermal annealing for power field effect transistor by using deep melt activation. In : Proceedings of the 14th IEEE international conference on advanced thermal processing of semiconductors (RTP), Kyoto, pp 193–197Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kurt Aigner
    • 1
  • Oliver Häberlen
  • Herbert Hopfgartner
  • Thomas Laska
  1. 1.Infineon Technologies AustriaVillachAustria

Personalised recommendations