Mechanical Characterisation and Modelling of Thin Chips

  • Stephan Schoenfelder
  • Joerg Bagdahn
  • Mattias Petzold


In order to ensure reliable products, electronic, as well as mechanical, properties of thin chips must also be characterised. In particular, the strength of silicon devices is an important key for improvement of the yield and avoidance of the fracture of silicon chips and devices in manufacturing and application, respectively. This chapter discusses strength parameter in detail and how strength of thin silicon chips can be analysed. Besides theoretical relations, examples of strength behaviour of thin silicon chips are presented regarding different manufacturing steps.


Residual Stress Stress Intensity Factor Fracture Stress Weibull Distribution Large Deflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The results being presented here has been enabled by different public funded projects during the last few years in the field of microelectronics and photovoltaics. The authors gratefully acknowledge the funding from the Kultusministerium Sachsen-Anhalt (contract no. 0037 KL/0903B) and the Federal Ministry of Education and Research within the Innoprofile initiative ‘SiThinSolar’ (contract no. 03IP607).


  1. 1.
    Abernethy RB (2000) The new Weibull handbook, 4th edn. Abernethy, North Palm BeachGoogle Scholar
  2. 2.
    Altenbach H (1993) Werkstoffmechanik. Deutscher Verlag für Grundstoffindustrie, StuttgartGoogle Scholar
  3. 3.
    Bagdahn J, Sharpe W, Jadaan O (2003) Strength of polysilicon at stress concentrations. J Microelectromech Syst 12(3):302–312CrossRefGoogle Scholar
  4. 4.
    Clarke DR (1992) Fracture of silicon and other semiconductors. Semiconductor Semimetals 37:79–140CrossRefGoogle Scholar
  5. 5.
    Danzer R, Supancic P, Harrer W (2006) Biaxial tensile strength test for brittle rectangular plates. J Ceram Soc Jpn 114(1335):1054–1060CrossRefGoogle Scholar
  6. 6.
    de With G, Wagemans HHM (1989) Ball-on-ring test revisited. J Am Ceram Soc 72(8):1538–1541CrossRefGoogle Scholar
  7. 7.
    Dubois SMM, Rignanese GM, Pardoen T, Charlier JC (2006) Ideal strength of silicon: an ab initio study. Phys Rev B Condens Matter Mater Phys 74(23):235203CrossRefGoogle Scholar
  8. 8.
    Duderstadt F (2003) Anwendung der von Karman'schen Plattentheorie und der Hertz'schen Pressung für die Spannungsanalyse zur Biegung von GaAs-Wafern im modifizierten Doppelringtest. Ph.D. thesis, Technische Universität BerlinGoogle Scholar
  9. 9.
    Ericson F, Schweitz JA (1990) Micromechanical fracture strength of silicon. J Appl Phys 68(11):5840–5844CrossRefGoogle Scholar
  10. 10.
    Fett T, Rizzi G, Ernst E, Müller R, Oberacker R (2007) A 3-balls-on-3-balls strength test for ceramic disks. J Eur Ceram Soc 27(1):1–12CrossRefGoogle Scholar
  11. 11.
    Gross D, Seelig T (2007) Bruchmechanik mit einer Einführung in die Mikromechanik. Springer-Verlag, BerlinMATHGoogle Scholar
  12. 12.
    Hall JJ (1967) Electronic effects in the elastic constants of n-type silicon. Phys Rev 161(3):756–761CrossRefGoogle Scholar
  13. 13.
    Haupt O, Siegel F, Schoonderbeek A, Richter L, Kling R, Ostendorf A (2008) Laser dicing of silicon: comparison of ablation mechanisms with a novel technology of thermally induced stress. J Laser Micro/Nanoeng 3:135–140CrossRefGoogle Scholar
  14. 14.
    Hawkins G, Berg H, Mahalingam M, Lewis G, Lofgran L (1987) Measurement of silicon strength as affected by wafer back processing. In: 25th annual proceedings – reliability physics 1987, IEEE, San Diego, CAGoogle Scholar
  15. 15.
    Heinze P, Amberger M, Chabert T (2008) So macht man den perfekten Chip. Mirkoprodution 1:45–50Google Scholar
  16. 16.
    Hu S (1982) Critical stress in silicon brittle fracture and effect of ion implantation and other surface treatments. J Appl Phys 53(5):3576–3580CrossRefGoogle Scholar
  17. 17.
    Hull R (1999) Properties of crystalline silicon. Institution of Engineering and Technology, LondonGoogle Scholar
  18. 18.
    Jiun H, Ahmad I, Jalar A, Omar G (2006) Effect of wafer thinning methods towards fracture strength and topography of silicon die. Microelectron Reliab 46(5–6):836–845Google Scholar
  19. 19.
    Johansson S, Schweitz JA, Tenerz L, Tiren J (1988) Fracture testing of silicon microelements in situ in a scanning electron microscope. J Appl Phys 63(10):4799–4803CrossRefGoogle Scholar
  20. 20.
    Kao R, Perrone N, Capps W (1971) Large-deflection solution of the coaxial-ring-circular-glass-plate flexure problem. J Am Ceram Soc 54(11):566–571CrossRefGoogle Scholar
  21. 21.
    Kumagai M, Uchiyama N, Ohmura E, Sugiura R, Atsumi K, Fukumitsu K (2007) Advanced dicing technology for semiconductor wafer–stealth dicing. IEEE Trans Semicond Manuf 20(3):259–265CrossRefGoogle Scholar
  22. 22.
    Landesberger C, Klink G, Schwinn G, Aschenbrenner R (2001) New dicing and thinning concept improves mechanical reliability of ultra thin silicon. In: International symposium on advanced packaging materials, BraseltonGoogle Scholar
  23. 23.
    Lawn B (1993) Fracture of brittle solids, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  24. 24.
    Li J, Hwang H, Ahn EC, Chen Q, Kim P, Lee T, Chung M, Chung T (2007) Laser dicing and subsequent die strength enhancement technologies for ultra-thin wafer. In: 57th electronic components and technology conference, 2007, RenoGoogle Scholar
  25. 25.
    McKinney KR, Herbert CM (1970) Effect of surface finish on structural ceramic failure. J Am Ceram Soc 53(9):513–516CrossRefGoogle Scholar
  26. 26.
    McLellan N, Fan N, Liu S, Lau K, Wu J (2004) Effects of wafer thinning condition on the roughness, morphology and fracture strength of silicon die. J Electron Packag 126(1):110–114CrossRefGoogle Scholar
  27. 27.
    Munz D, Fett T (2001) Ceramics: mechanical properties, failure behaviour, materials selection, 1st edn. Springer-Verlag, Berlin-Heidelberg/New YorkGoogle Scholar
  28. 28.
    Namazu T, Isono Y, Tanaka T (2000) Evaluation of size effect on mechanical properties of silicon by nanoscale bending test using AFM. J Microelectromech Syst 9(4):450–459CrossRefGoogle Scholar
  29. 29.
    NORM ASTM C 1161–02c (2002) Standard test method for flexural strength of advanced ceramics at ambient temperatureGoogle Scholar
  30. 30.
    NORM ASTM F 394-78 (1996) Standard test method for biaxial flexure strength (modulus of rupture) of ceramic substratesGoogle Scholar
  31. 31.
    NORM DIN EN 1288-1 (2000) Bestimmung der Biegefestigkeit von Glas – Teil 1: Grundlagen, 2000Google Scholar
  32. 32.
    NORM DIN EN 1288-2 (2000) Bestimmung der Biegefestigkeit von Glas – Teil 2: Doppelring-Biegeversuch an plattenförmigen Proben mit großen PrüfflächenGoogle Scholar
  33. 33.
    NORM DIN EN 1288-3 (2000) Bestimmung der Biegefestigkeit von Glas – Teil 3: Prüfung von Proben bei zweiseitiger AuflagerungGoogle Scholar
  34. 34.
    NORM DIN EN 843-1 (2006) Hochleistungskeramik – Monolithische Keramik – Mechanische Eigenschaften bei Raumtemperatur – Teil 1: Bestimmung der BiegefestigkeitGoogle Scholar
  35. 35.
    NORM SEMI G86–0303 (2003) Test method for measurement of chip (Die) strength by mean of 3-point bendingGoogle Scholar
  36. 36.
    Peirce FY (1926) Tensile tests for cotton yarns v. – ‘The weakest link’ theorems on the strength of long and of composite specimen. J Text Inst 17:T355–T368CrossRefGoogle Scholar
  37. 37.
    Pérez R, Gumbsch P (2000) Directional anisotropy in the cleavage fracture of silicon. Phys Rev Lett 84(23):5347–5350CrossRefGoogle Scholar
  38. 38.
    Perrottet D, Housh R, Richerzhagen B (2006) Fast cutting and scribing of silicon PV cells using the water-jet-guided laser technology. In: 21st European photovoltaic solar energy conference and exhibition, DresdenGoogle Scholar
  39. 39.
    Ritter J Jr, Jakus K, Batakis A, Bandyopadhyay N (1980) Appraisal of biaxial strength testing. J Non-Cryst Solids 38/39(Pt 1):419–424CrossRefGoogle Scholar
  40. 40.
    Schmitt RW, Blank K, Schoenbrunn G (1983) Experimental stress analysis for the coaxial ring bending test method. Sprechsaal 116(5):397–405Google Scholar
  41. 41.
    Schoenfelder S (2010) Experimentelle und theoretische Untersuchungen zur Festigkeit dünner Siliziumsubstrate. PhD thesis, Martin-Luther-Universität Halle, WittenbergGoogle Scholar
  42. 42.
    Schoenfelder S, Bagdahn J, Baumann S, Kray D, Mayer K, Willeke G, Becker M, Christiansen S (2006) Strength characterization of laser diced silicon for application in solar industry. In: 21st European photovoltaic solar energy conference and exhibition, 2006,DresdenGoogle Scholar
  43. 43.
    Schoenfelder S, Ebert M, Landesberger C, Bock K, Bagdahn J (2007) Investigations of the influence of dicing techniques on the strength properties of thin silicon. Microelectron Reliab 47(2–3):168–178Google Scholar
  44. 44.
    Sherman D (2003) Hackle or textured mirror? Analysis of surface perturbation in single crystal silicon. J Mater Sci 38(4):783–788CrossRefGoogle Scholar
  45. 45.
    Shetty DK, Rosenfield AR, McGuire P, Bansal GK, Duckworth WH (1980) Biaxial flexure tests for ceramics. Am Ceram Soc Bull 59(12):1193–1197Google Scholar
  46. 46.
    Theuss H, Koller A, Kröninger W, Schoenfelder S, Petzold M (2008) Assessment of a laser singulation process for Si-wafers with metallized back side and small die size. In: 58th electronic components and technology conference, 2008, OrlandoGoogle Scholar
  47. 47.
    Toftness R, Boyle A, Gillen D (2005) Laser technology for wafer dicing and micro via drilling for next generation wafers. In: Proceedings of SPIE–the international society for optical engineering, vol 5713, SPIE, Xsil Ltd., Loveland/DublinGoogle Scholar
  48. 48.
    Tsai M, Chen C (2008) Evaluation of test methods for silicon die strength. Microelectron Reliab 48(6):933–941MathSciNetCrossRefGoogle Scholar
  49. 49.
    Umeno Y, Kushima A, Kitamura T, Gumbsch P, Li J (2005) Ab initio study of the surface properties and ideal strength of (100) silicon thin films. Phys Rev B 72(16):165431CrossRefGoogle Scholar
  50. 50.
    Vedde J, Gravesen P (1996) The fracture strength of nitrogen doped silicon wafers. Mater Sci Eng, B 36(1–3):246–250CrossRefGoogle Scholar
  51. 51.
    Vitman FF, Pukh VP (1963) A method for determining the strength of sheet glass. Zavodskaya Laboratoriya 29(7):863–867Google Scholar
  52. 52.
    Wachtman J, Capps W, Mandel J (1972) Biaxial flexure tests of ceramic substrates. J Mater 7(2):188–194Google Scholar
  53. 53.
    Weibull W (1939) A statistical theory of the strength of materials. Ingeniörsvetenskapsakademiens Handlingar Nr. 151. Generalstabens Litografiska Anstalts Förlag, StockholmGoogle Scholar
  54. 54.
    Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297MATHGoogle Scholar
  55. 55.
    Woinowsky-Krieger S (1933) Der Spannungszustand in dicken elastischen Platten. Ing Arch 4(4):305–331CrossRefGoogle Scholar
  56. 56.
    Yang Y, Munck KD, Teixeira RC, Swinnen B, Verlinden B, Wolf ID (2008) Process induced sub-surface damage in mechanically ground silicon wafers. Semicond Sci Technol 23(7):075038CrossRefGoogle Scholar
  57. 57.
    Yang Y, Teixeira RC, Roussel P, Swinnen B, Verlinden B, Wolf ID (2009) Statistical analysis of the influence of thinning processes on the strength of silicon. In: Materials research society symposium proceedings, Warrendale 1112:E03–E09Google Scholar
  58. 58.
    Zarudi I, Zhang L (1996) Subsurface damage in single-crystal silicon due to grinding and polishing. J Mater Sci Lett 15(7):586–587CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Stephan Schoenfelder
    • 1
  • Joerg Bagdahn
  • Mattias Petzold
  1. 1.Fraunhofer Institute for Mechanics of MaterialsHalleGermany

Personalised recommendations