Skip to main content

Pharmaceutical Aerosol Sprays for Drug Delivery to the Lungs

  • Chapter
  • First Online:

Abstract

Respiratory illnesses are commonly treated with drugs delivered to the lungs as an inhaled aerosol. The inhaled aerosol route sometimes offers advantages over other routes such as injection or oral delivery. These advantages include rapid and predictable onset of action of drug, decreased adverse reactions, as well as safe and convenient delivery. However, the design of a device and formulation for reliable delivery of a pharmaceutical compound as an inhaled aerosol is more difficult than most other delivery routes. This is because of the need to transform the active ingredient into an aerosol having particle sizes of a few micrometers in diameter that is then supplied to the patient’s mouth upon inhalation. Devices that can create sprays with particles in the micrometer size range, but which remain portable, inexpensive to manufacture, easy to use by patients, and are robust enough to withstand patient use, are relatively few in design. Indeed, at present only four basic spray production mechanisms are currently in use on the clinical market for drug delivery to the lungs: pressurized release of a volatile propellant, colliding liquid jets, air-blast atomization and high frequency vibration methods. While other methods have undergone development (e.g., Rayleigh breakup of an extruded liquid jet [1]; high voltage electrosprays [2]), they have not yet reached market release. In the following we consider the four clinically available methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   469.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   599.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ward, M. E., Woodhouse, A., Mather, L. E., Farr, S. J., Okikawa, J. K., Lloyd, P., Schuster, J. A., and Rubsamen, R. M. 1997. Morphine pharmacokinetics after pulmonary administration from a novel aerosol delivery system, Clin. Pharm. Ther. 62:596–609.

    Article  Google Scholar 

  2. Meesters, G. M. H., Vercoulen, P. H. W., Marijnissen, J. C. M., and Scarlett, B. 1992. Generation of micron-sized droplets from the Taylor cone, J. Aerosol Sci. 23:37–49.

    Article  Google Scholar 

  3. Finlay, W. H. 2001. Mechanics of Inhaled Pharmaceutical Aerosols: An Introduction. Academic. London

    Google Scholar 

  4. Versteeg, H. K., Hargrave, G. K., and Kirby, M. 2006. Internal flow and near-orifice spray visualisation of a model pharmaceutical pressurized metered dose inhaler, J. Phys. (Conf. Ser.) 45:207–213.

    Article  Google Scholar 

  5. Crosland, B. M., Johnson, M. R. J., and Matida, E. A. 2009. Characterization of the spray velocities from a pressurized metered-dose inhaler, J. Aerosol Med. Pulm. Drug. Del. 22:85097.

    Google Scholar 

  6. Dunbar, C. A., Watkins, A. P., and Miller, J. F. 1997. An experimental investigation of the spray issued from a pMDI using laser diagnostic techniques, J. Aerosol Med. 10:351–268.

    Article  Google Scholar 

  7. Clark, A. R. 1996. MDIs: physics of aerosol formation, J. Aerosol Med. 9S:19–26.

    Google Scholar 

  8. Kleinstreuer, C., Shi, H., and Zhang, Z. 2006. Computational analyses of a pressurized metered dose inhaler and a new drug-aerosol targeting methodology, J. Aerosol Med. 20:294–309.

    Article  Google Scholar 

  9. Martin, A. R. and Finlay, W. H. The effect of humidity on particle sizing from metered-dose inhalers, Aerosol Sci. Technol. 39:283–289, 2005.

    Google Scholar 

  10. Domnick, J. and Durst, F. 1995. Measurement of bubble size, velocity and concentration in flashing flow behind a sudden constriction, Int. J. Multiphase Flow 21:1047–1062.

    Article  MATH  Google Scholar 

  11. Dunbar, C. A., Watkins, A. P., and Miller, J. F. 1997. Theoretical investigation of the spray from a metered-dose inhaler. Atom. Sprays 7:417–436.

    Google Scholar 

  12. Zierenberg, B., Eicher, J., Dunne, S., and Freund, B. 1996. Boehringer Ingelheim nebulizer BINEB a new approach to inhalation therapy. In R. N. Dalby, P. R. Byron, and S. J. Farr, eds., Proceedings of Respiratory Drug Delivery V. Interpharm Press, Buffalo Grove, pp. 187–193.

    Google Scholar 

  13. Bartels, F., Bachtler, W., Dunne, S. T., Eicher, J., Freund, B., Hart, W. B., and Lessmoellmann, C. 1999. Atomizing nozzle and filter and spray generating device, US Patent 6007676.

    Google Scholar 

  14. Jaeger, J., Cirillo, P., Eicher, J., Geser, J., Freund, B., and Zierenberg, B. 2005. Device for producing high pressure in a fluid in miniature, US patent 69185467.

    Google Scholar 

  15. Zierenberg, B. 1999. Optimizing the in vitro performance of Respimat, J. Aerosol Med. 12:S19–S24.

    Article  Google Scholar 

  16. Mercer, T. T., Tillery, M. I., and Chow, H. Y. 1968. Operating characteristics of some compressed-air nebulizers, Am. Ind. Hyg. J. 29:66–78.

    Google Scholar 

  17. Dessanges, J.-F. 2001. A history of nebulization, J. Aerosol Med. 14:65–71.

    Article  Google Scholar 

  18. Niven, R. W., Speer, M., Schreier, H. 1991. Nebulization of liposomes II. The effects of size and modelling of solute release profiles, Pharm. Res. 8:217–221.

    Article  Google Scholar 

  19. Lentz, Y. K., Worden, L. R., Anchordoquy, T. J., and Lengsfeld, C. S. 2005. Effect of jet nebulization on DNA: identifying the dominant degradation mechanism and mitigation methods, J. Aerosol Sci. 36:973–990.

    Article  Google Scholar 

  20. Finlay, W. H., Lange, C. F., King, M., and Speert, D. 2000. Lung delivery of aerosolized dextran, Am. J. Resp. Crit. Care Med. 161:91–97.

    Google Scholar 

  21. Finlay, W. H., Stapleton, K. W., and Zuberbuhler, P. 1998. Variations in predicted regional lung deposition of salbutamol sulphate between 19 nebulizer models, J. Aerosol Med. 11:65–80.

    Article  Google Scholar 

  22. Topp, M. 1973. Ultrasonic atomization – a photographic study of the mechanism of disintegration, J. Aerosol Sci. 4:17–25.

    Article  Google Scholar 

  23. Cipolla, D. C., Clark, A. R., Chan, H. K., Gonda, I., and Shire, S. J. 1994. Assessment of aerosol delivery systems for recombinant human deoxyribonuclease, STP Pharm. Sci. 4:50–62.

    Google Scholar 

  24. Nikander, K., Turpeinen, M., and Wollmer, P. 1999. The conventional ultrasonic nebulizer proved inefficient in nebulizing a suspension, J. Aerosol Med. 12:47–53.

    Article  Google Scholar 

  25. Ghazanfari, T., Elhissi, A. M. A., Ding, Z., and Taylor, K. M. G. 2007. The influence of fluid physicochemical properties on vibrating-mesh nebulization, Int. J. Pharm. 339:103–111.

    Article  Google Scholar 

  26. Knoch, M. and Finlay, W. H. 2008. Nebulizer technologies. In Modified-Release Drug Delivery Technology, 2nd edn., ed. M. J. Rathbone, Marcel Dekker, pp. 613–622, Chap. 45.

    Google Scholar 

  27. Lass, J. S., Sant, A., and Knoch, M. 2006. New advances in aerosolised drug delivery: vibrating membrane nebuliser technology, Exp. Op. Drug Del. 3:693–702.

    Article  Google Scholar 

  28. Zhang, G., Anand, D., and Wiedmann, T. S. 2007. Performance of the vibrating membrane aerosol generation device: aeroneb micropump nebulizer, J. Aerosol Med. 20:408–416.

    Article  Google Scholar 

  29. Knoch, M. and Keller, M. 2005. The customised electronic nebuliser: a new category of liquid aerosol drug delivery systems, Exp. Op. Drug Del. 2:377–390.

    Article  Google Scholar 

  30. Elhissi, A. M. A., Faizi, M., Naji, W. F., Gill, H. S., and Taylor, K. M. G. 2007. Physical stability and aerosol properties of liposomes delivered using an air-jet nebulizer and a novel micropump device with large mesh apertures, Int. J. Pharm. 334:62–70.

    Article  Google Scholar 

  31. Rottier, B. L., van Erp, C. J. P., Sluyter, T. S., Heijerman, H. G. M., Frijlink, H. W. F., and de Boer, A. H. 2009. Changes in performance of the Pari eFlow® rapid and Pari LC Plus™ during 6 months use by CF patients, J. Aerosol Med. Pulm. Drug Del., ahead of print. doi:10.1089/jamp.2008.0712.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Finlay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer US

About this chapter

Cite this chapter

Finlay, W.H. (2011). Pharmaceutical Aerosol Sprays for Drug Delivery to the Lungs. In: Ashgriz, N. (eds) Handbook of Atomization and Sprays. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7264-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7264-4_41

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7263-7

  • Online ISBN: 978-1-4419-7264-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics