Gauge Fields and Instantons

  • Gregory L. Naber
Part of the Texts in Applied Mathematics book series (TAM, volume 25)


The Im ℍ-valued 1-form \(\omega = \mathrm{Im}\,(\bar{{q}}^{1}{\mathit{dq}}^{1} +\bar{ {q}}^{2}{\mathit{dq}}^{2})\) will occupy center stage for much of the remainder of our story. We begin by adopting its two most important properties ((5.9.10) and (5.9.11)) as the defining conditions for a connection on a principal bundle.


Modulus Space Gauge Transformation Gauge Field Principal Bundle Gauge Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Lang.
    Lang, S., Linear Algebra, 2nd Edition, Addison-Wesley, Reading, MA, 1971.Google Scholar
  2. Helg.
    Helgason, S., Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.MATHGoogle Scholar
  3. Don.
    Donaldson, S.K., “An application of gauge theory to four dimensional topology”, J. Diff. Geo., 18(1983), 279–315.MathSciNetMATHGoogle Scholar
  4. Sp2.
    Spivak, M., A Comprehensive Introduction to Differential Geometry, Volumes I–V, Publish or Perish, Inc., Boston, 1979.Google Scholar
  5. YM.
    Yang, C.N. and R.L. Mills, “Conservation of isotopic spin and isotopic gauge invariance”, Phys. Rev., 96(1954), 191–195.MathSciNetCrossRefGoogle Scholar
  6. KN1.
    Kobayashi, S. and K. Nomizu, Foundations of Differential Geometry, Vol. 1, Wiley-Interscience, New York, 1963.Google Scholar
  7. BPST.
    Belavin, A., A. Polyakov, A. Schwartz and Y. Tyupkin, “Pseudoparticle solutions of the Yang-Mills equations”, Phys. Lett., 59B(1975), 85–87.MathSciNetGoogle Scholar
  8. Trau.
    Trautman, A., “Solutions of the Maxwell and Yang-Mills equations associated with Hopf fibrings”, Inter. J. Theo. Phys., Vol. 16, No. 8 (1977), 561–565.CrossRefGoogle Scholar
  9. NT.
    Nowakowski, J. and A. Trautman, “Natural connections on Stiefel bundles are sourceless gauge fields”, J. Math. Phys., Vol. 19, No. 5 (1978), 1100–1103.MathSciNetMATHCrossRefGoogle Scholar
  10. FU.
    Freed, D.S., and K.K. Uhlenbeck, Instantons and Four-Manifolds, MSRI Publications, Springer-Verlag, New York, Berlin, 1984.MATHCrossRefGoogle Scholar
  11. Law.
    Lawson, H.B., The Theory of Gauge Fields in Four Dimensions, Regional Conference Series in Mathematics #58, Amer. Math. Soc., Providence, RI, 1985.Google Scholar
  12. Sp1.
    Spivak, M., Calculus on Manifolds, W. A. Benjamin, Inc., New York, 1965.MATHGoogle Scholar
  13. Guid.
    Guidry, M., Gauge Field Theories, John Wiley & Sons, Inc., New York, 1991.CrossRefGoogle Scholar
  14. Uhl.
    Uhlenbeck, K., “Removable singularities in Yang-Mills fields”, Comm. Math. Phys., 83(1982), 11–30.MathSciNetMATHCrossRefGoogle Scholar
  15. N4.
    Naber, G.L., Topology, Geometry and Gauge Fields: Interactions, Springer-Verlag, New York, Berlin, to appear.Google Scholar
  16. AHS.
    Atiyah, M.F., N.J. Hitchin and I.M. Singer, “Self duality in four dimensional Riemannian geometry”, Proc. Roy. Soc. Lond., A362(1978), 425–461.MathSciNetGoogle Scholar
  17. Atiy.
    Atiyah, M.F., Geometry of Yang-Mills Fields, Lezioni Fermiane, Accademia Nazionale dei Lincei Scuola Normale Superione, Pisa, 1979.MATHGoogle Scholar
  18. Mat.
    Matumoto, T., “Three Riemannian metrics on the moduli space of BPST instantons over S 4”, Hiroshima Math. J., 19(1989), 221–224.MathSciNetMATHGoogle Scholar
  19. MM.
    Marathe, K.B. and G. Martucci, The Mathematical Foundations of Gauge Theories, North-Holland, Amsterdam, 1992.MATHGoogle Scholar
  20. Buch.
    Buchdahl, N.P., “Instantons on CP 2”, J. Diff. Geo., 24(1986), 19–52.MathSciNetMATHGoogle Scholar
  21. N3.
    Naber, G.L., The Geometry of Minkowski Spacetime, Springer-Verlag, Applied Mathematical Sciences Series #92, New York, Berlin, 1992.Google Scholar
  22. Bl.
    Bleecker, D., Gauge Theory and Variational Principles, Addison-Wesley, Reading, MA, 1981.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Gregory L. Naber
    • 1
  1. 1.Department of MathematicsDrexel UniversityPhiladelphiaUSA

Personalised recommendations