Differential Subordination of Harmonic Functions and Martingales

  • Burgess Davis
  • Renming Song
Part of the Selected Works in Probability and Statistics book series (SWPS)


A fruitful analogy in harmonic analysis is the analogy between a conjugate harmonic function and a martingale transform. One idea that underlies both of these concepts is the idea of differential subordination. Our study of it here yields new information about harmonic functions and martingales, and their interaction.


Banach Space Harmonic Function Hardy Space Harmonic Measure Complex Hilbert Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Baernstein, Some sharp inequalities for conjugate functions, Indiana Univ. Math. J. 27 (1978), 833-852.MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    E. Berkson, T. A. Gillespie, and P. S. Muhly, Abstract spectral decompositions guaranteed by the Hilbert transform, Proc. London Math, Soc. 53 (1986), 489-517.MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    E. Berkson, T. A. Gillespie, and P. S. Muhly, A generalization of Macaev’s theorem to non-commutative LP-spaces, Integral Equations and Oper. Theory 10 (1987), 164-186.MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    E. Berkson, T. A. Gillespie, and P. S. Muhly, Analyticity and spectral decompositions of Lpfor compact abelian groups, Pacific J. Math. 127 (1987), 247-260.MATHMathSciNetGoogle Scholar
  5. 5.
    O. Blasco, Hardy spaces of vector valued functions: Duali ty, to appear.Google Scholar
  6. 6.
    O. Blasco, Boundary values of functions in vector-valued Hardy spaces and geometry on Banach spaces, to appear.Google Scholar
  7. 7.
    J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat. 21 (1983), 163-168.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Bourgain, Extension of a result of Benedek, CalderÓn and Panzone, Ark. Mat. 22 (1984), 91-95.MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    J. Bourgain, Vector valued singular integrals and the H - BMO duality, Probability Theory and Harmonic Analysis, J. A. Chao and W. A. Woyczynski, editors, Marcel Dekker, New York (1986), 1-19.Google Scholar
  10. 10.
    D. L. Burkholder, Martingale transforms, Ann. Math. Stat. 37 (1966), 1494-1504.MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    D. L. Burkholder, A sharp inequality for martingale transforms, Ann. Probab. 7 (1979), 858-863.MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    D. L. Burkholder, A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Amu Probab. 9 (1981), 997-1011.MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    D. L. Burkholder, Martingale transforms and the geometry of Banach spaces, Proceedings of the Third International Conference on Probability in Banach Spaces, Tufts University, 1980, Lecture Notes in Mathematics 860 (1981), 35-50.MathSciNetGoogle Scholar
  14. 14.
    D. L. Burkholder, A nonlinear partial differential equation and the unconditional constant of the Haar system in L, Bull, Amer. Math. Soc. 7 (1982), 591-595.MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, Conference on Harmonic Analysis in Honor of Antoni Zygrnund, University of Chicago, 1981, Wadsworth International Group, Belmont, California, 1 (1983), 270-286.Google Scholar
  16. 16.
    D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 12 (1984), 647-702.MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Do L. Burkholder, Martingales and Fourier analysis in Banach spaces, C.I.M.E. Lectures, Varenna, Italy, 1985, Lecture Notes in Ma thematics 1206 (1986), 61-108.Google Scholar
  18. 18.
    D. L. Burkholder, A proof of Pelczynski’s conjecture for the Haar system, Studia Math., to appear.Google Scholar
  19. 19.
    D. L. Burkholder, Sharp inequalities for martingales and stochastic integrals, Colloque Paul Levy, Astérisque, to appear.Google Scholar
  20. 20.
    F. Cobos, Some spaces in which martingale difference sequences are un-conditional, Bull. Polish Acad, of Sei, Math. 34 (1986), 695-703.MATHMathSciNetGoogle Scholar
  21. 21.
    T. Coulhon and D. Lamberton, Régularité L pour les equations devolution, to appear.Google Scholar
  22. 22.
    B. Davis, Comparison tests for the convergence of martingales, Ann. Math. Stat. 39 (1968), 2141-2144.MATHCrossRefGoogle Scholar
  23. 23.
    B. Davis, On the weak type (1,1) inequality for conjugate functions, Proc, Amer. Math. Soc. 44 (1974), 307-311.MATHGoogle Scholar
  24. 24.
    J. L. Doob, Stochastic Processes, Wiley, New York, 1953.MATHGoogle Scholar
  25. 25.
    J. L. Doob, Semimartingales and subharmonic functions, Trans. Amer. Math. Soc. 77 (1954), 86-121.MATHMathSciNetGoogle Scholar
  26. 26.
    J. L. Doob, Remarks on the boundary limits of harmonic functions, J. SIAM Numer. Anal, 3 (1966), 229-235.MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Essen, A superharmonic proof of the M. Riesz conjugate function theorem, Ark. Math. 22 (1984), 241-249.MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    D. L. Fernandez and J. B. Garcia, Interpolation of Orlicz-valued function spaces and U.M.D. property, to appear.Google Scholar
  29. 29.
    T. W. Gamelin, uniform Algebras and Jensen Measures, Cambridge University Press, London, 1978.MATHGoogle Scholar
  30. 30.
    J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North Holland, Amsterdam, 1985.Google Scholar
  31. 31.
    D. J. H. Garling, Brownian motion and UMD-spaces, Conference on Probability and Banach Spaces, Zaragoza, 1985, Lecture Notes in Mathematics 1221 (1986), 36-49.Google Scholar
  32. 32.
    D. J. H. Garling, Random martingale transform inequalities, to appear.Google Scholar
  33. 33.
    A. N. Kolmogorov, Sur les fonctions harmoniques conjuguées et les series de Fourier, Fund. Math, 7 (1925), 24-29.Google Scholar
  34. 34.
    S. Kwapien, Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, Studia Math. 44 (1972), 583-595.MATHMathSciNetGoogle Scholar
  35. 35.
    J. Marcinkiewicz, Quelques théorèmes sur les series orthogonales, Ann. Soc. Polon. Math. 16 (1937), 84-96.Google Scholar
  36. 36.
    T. R. McConnell, On Fourier multiplier transformations of Banach-valued functions, Trans. Amer. Math, Soc 285 (1984), 739-757.MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    T. R. McConnell, Decoupling and stochastic integration in UMD Banach spaces, Probab. Math. Stat., to appear.Google Scholar
  38. 38.
    R. E. A. C. Paley, A remarkable series of orthogonal functions I. Proc. London Math. Soc. 34 (1932), 24l-264.Google Scholar
  39. 39.
    A. Pelczyński, Norms of classical operators in function spaces, Colloque Laurent Schwartz, Astérisque 131 (1985), 137-162.Google Scholar
  40. 40.
    S. K. Pichorides, On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov, Studia Math. 44 (1972), 165-179.MATHMathSciNetGoogle Scholar
  41. 41.
    M. Riesz, Sur les fonctions conjuguées, Math. Z. 27 (1927), 218-244.MATHMathSciNetCrossRefGoogle Scholar
  42. 42.
    J. L. Rubio de Francia, Martingale and integral transforms of Banach space valued functions, Conference on Probability and Banach Spaces, Zaragoza, 1985, Lecture Notes in Mathematics 1221 (1986), 195-222.MathSciNetGoogle Scholar
  43. 43.
    J. L. Rubio de Francia, Linear operators in Banach lattices and weighted L2inequalities, Math. Nachr. 133 (1987), 197-209.MATHMathSciNetCrossRefGoogle Scholar
  44. 44.
    J. L. Rubio de Francia, F. J. Ruiz, and J. L. Torrea, Calderon-Zygmund theory for operator-valued kernels, Advances in Math. 62 (1986), 7-48.MATHMathSciNetCrossRefGoogle Scholar
  45. 45.
    J. L. Rubio de Francia and J, L. Torrea, Some Banach techniques in vector valued Fourier analysis, Colloq. Math., to appear.Google Scholar
  46. 46.
    E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970.MATHGoogle Scholar
  47. 47.
    E. M. Stein and G. Weiss, On the theory of harmonic functions of several variables I. The theory of HP-spaces, Acta Math. 103 (1960), 25-62.MATHMathSciNetGoogle Scholar
  48. 48.
    T. M. Wolniewicz, The Hubert transform in weighted spaces of integrable vector-valued functions, Colloq. Math. 53 (1987), 103-108.MATHMathSciNetGoogle Scholar
  49. 49.
    F. Zimmermann, On vector-valued Fourier multiplier theorems, to appear.Google Scholar
  50. 50.
    A. Zygmund, Trigonometric Series II, Cambridge University Press, Cambridge, 1959.Google Scholar
  51. 51.
    T. Figiel, On equivalence of some bases to the Haar system in spaces of vector-valued functions, Bull. Polon. Acad. Sei., to appear.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Department of StatisticsPurdue UniversityWest LafayetteUSA
  2. 2.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations