Martingales and Fourier Analysis in Banach Spaces

  • Burgess Davis
  • Renming Song
Part of the Selected Works in Probability and Statistics book series (SWPS)


The power of martingale theory in the study of the Fourier analysis of scalarvalued functions is now widely appreciated. Our aim here is to describe some new martingale methods and their application to the Fourier analysis of functions having values in a Banach space.


Banach Space Singular Integral Operator Sharp Inequality Martingale Difference Sequence Nontangential Maximal Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Aldous, Unconditional bases and martingales in L (F), Math. Proe. Cambridge Phil, Soc, 85 (1979), 117-123.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Benedek, A. P. Calderon, and R. Panzone, Convolution operators on Banach space valued functions, Proc, Nat. Acad. Sei. 48 (1962), 356-365.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    E. Berkson, T. A. Gillespie, and P. S. Muhly, Theorie spectrale dans les espaces UMD, C. R. Acad, Se. Paris (1986).Google Scholar
  4. 4.
    O. Blasco, Espacios de Hardy de funciones con valons vector ia les, Publicaciones del Seminario Matematico, Universidad de Zaragoza, 1985.Google Scholar
  5. 5.
    S. Bochner and A. E. Taylor, Linear functionals on certain spaces of abstractly-valued functions, Ann. Math, 39 (1938), 913-944.CrossRefMathSciNetGoogle Scholar
  6. 6.
    J. Bourgain, Some remarks on Banach f paces in which martingale difference sequences are unconditional, Ark. Mat. 21 (1983), 163-168.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    J. Bourgain, Extension of a result of Benedek, Calderon, and Panzone, Ark. Mat. 22 (1984), 91-95.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    J. Bourgain, On martingale transforms in finite dimensional lattices with an appendix on the K-convexity constant, Math, Nachr. 119 (1984), 41-53.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Bourgain, Vector valued singular integrals and the H1- BMO duality, Probability Theory and Harmonic Analysis, J. A. Chao and W. A. Woyczynski, editors, Marcel Dekker, New York (1986), 1-19.Google Scholar
  10. 10.
    J. Bourgain and W. J. Davis, Martingale transforms and complex uniform convexity, Trans. Amer. Math, Soc.Google Scholar
  11. 11.
    D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494-1504.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probab. 1 (1973), 19-42.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    D. L. Burkholder, A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab. 9 (1981), 997-1011.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    D. L. Burkholder, Martingale transforms and the geometry of Banach spaces, Proceedings of the Third International Conference on Probability in Banach Spaces, Tufts University, 1980, Lecture Notes in Mathematics, 860 (1981), 35-50.MathSciNetGoogle Scholar
  15. 15.
    D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, Conference on Harmonic Analysis in Honor of Antoni Zygmund, University of Chicago, 1981, Wadsworth International Group, Belmont, California, 1 (1983), 270-286.Google Scholar
  16. 16.
    D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 12 (1984), 647-702.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    D. L. Burkholder, An elementary proof of an inequality of  R. E. A. C. Paley, Bull. London Math. Soc. 17 (1985), 474-478.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    D. L. Burkholder, An extension of a classical martingale inequality, Probability Theory and Harmonic Analysis, J. A. Chao and W. A. Woyczynski, editors, Marcel Dekker, New York (1986), 21-30.Google Scholar
  19. 19.
    D. L. Burkholder, A sharp and strict L -inequality for stochastic integrals, Ann. Probab, 14 (1986).Google Scholar
  20. 20.
    D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970), 249-304.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    D. L. Burkholder, R. F. Gundy, and M. L. Silverstein, A maximal function characterization of the class HP, Trans. Amer. Math. Soc. 157 (1971), 137-153.MATHMathSciNetGoogle Scholar
  22. 22.
    A. P. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    A. P. Calderon and A. Zygmund, On singular integrals, Amer. J, of Math. 78 (1956), 289-309.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    M. L. Cartwright, Manuscripts of Hardy, Littlewood, Marcel Riesz and Titchmarsh, Bull. London Math. Soc. 14 (1982), 472-532.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    C. Dellacherie and P.-A. Meyer, Probabilités et potentiel: Théorie des martingales, Hermann, Paris, 1980.MATHGoogle Scholar
  26. 26.
    J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, American Mathematical Society, Providence, Rhode Island, 1977.Google Scholar
  27. 27.
    J. L. Doob, Stochastic Processes, Wiley, New York, 1953.MATHGoogle Scholar
  28. 28.
    L. E. Dor and E. Odell, Monotone bases in L, Pacific J. Math, 60 (1975), 51-61.MATHMathSciNetGoogle Scholar
  29. 29.
    P. Enflo, Banach spaces which can be given an equivalent uniformly convex norm, Israel J, Math. 13 (1972), 281-288.CrossRefMathSciNetGoogle Scholar
  30. 30.
    C. Fefferman and E. M. Stein, H spaces of several variables, Acta Math. 129 (1972), 137-193.MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    L. Cårding, Marcel Riesz in memoriam, Acta Math. 127 (1970), i-xi.CrossRefGoogle Scholar
  32. 32.
    D. J. H. Garling, Brownian motion and UMD-spaces, Conference on Probability and Banach Spaces, Zaragoza, 1985, Lecture Notes in Mathematics.Google Scholar
  33. 33.
    J. A. Gutiérrez, On the Boundedness of the Banach Space-Valued Hilbert Transform, Ph.D. Dissertation, University of Texas, Austin, 1982.Google Scholar
  34. 34.
    G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applications, Acta Math. 54 (1930), 81-116.CrossRefMathSciNetGoogle Scholar
  35. 35.
    S. Rwapień, Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, Studia Math, 44 (1972), 583-595.MathSciNetGoogle Scholar
  36. 36.
    J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I: Sequence Spaces, Springer, New York, 1977.MATHGoogle Scholar
  37. 37.
    B. Maurey, Système de Haar, Séminaire Maurey-Schwartz (1974-75), Ecole Polytechnique, Paris, 1975.Google Scholar
  38. 38.
    T. R. McCormell, On Fourier multiplier transformations of Banach-valued functions, Trans. Amer. Math. Soc. 285 (1984), 739-757.CrossRefMathSciNetGoogle Scholar
  39. 39.
    T. R. McCormell, A Skorohod-like representation in infinite dimensions, Probability in Banach Spaces V, Tufts University, 1984, Lecture Notes in Mathematics, 1153 (1985), 359-368.Google Scholar
  40. 40.
    A. Pelczyński and H. P. Rosenthal, Localization techniques in Lpspaces, Studia Math. 52 (1975), 263-289.MATHGoogle Scholar
  41. 41.
    G. Pisier, Un exemple concernant la super-reflexivite, Seminaire Maurey-Schwartz (1974-75), Ecole Polytechnique, Paris, 1975.Google Scholar
  42. 42.
    M. Riesz, Les fonctions conjuguées et les series de Fourier, C. R. Acad. Sei. Paris, 178 (1924), 1464-1467.MATHGoogle Scholar
  43. 43.
    M. Riesz, Sur les fonctions conjuguées, Math. Z. 27 (1927), 218-244.MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    J. L. Rubio de Francia, Fourier series and Hilbert transforms with values in UMD Banach spaces, Studia Math. 81 (1985), 95-105.MATHMathSciNetGoogle Scholar
  45. 45.
    J. L. Rubio de Francia, F, J. Ruiz, and J. L. Torrea, Calderon-Zygmund theory for operator-valued kernels, Advances in Math.Google Scholar
  46. 46.
    J. Schwartz, A remark on inequalities of Calderon-Zygmund type for vector-valued functions, Comm. Pure Appi. Math. 14 (1961), 785-799.MATHCrossRefGoogle Scholar
  47. 47.
    E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton, New Jersey, Princeton University Press, 1970.MATHGoogle Scholar
  48. 48.
    S. Vági, A remark on Plancherel’s theorem for Banach space valued functions, Ann. Scuola Norm. Sup. Pisa Cl. Sei. 23 (1969), 305-315.MATHGoogle Scholar
  49. 49.
    B. Virot, Quelques inegalities concernant les transformées de Hubert des fonctions à valeurs vectorielles, C. R. Acad. Se. Paris, 293 (1981), 459-462.MATHMathSciNetGoogle Scholar
  50. 50.
    A. Zygmund, Trigonometric Series I, II, New York, Cambridge University Press, 1959.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Department of StatisticsPurdue UniversityWest LafayetteUSA
  2. 2.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations