Special Invited Paper

Boundary Value Problems and Sharp Inequalities for Martingale Transforms
Part of the Selected Works in Probability and Statistics book series (SWPS)


Let p* be the maximum of p and q where 1 < p < ∞ and 1/p + 1/q = 1. If d = (d 1 d 2,…) is a martingale difference sequence in real L p (0, 1), ε = (ε 1, ε 2,…) is a sequence of numbers in {–1, 1}, and nis a positive integer, then
$$||\sum\nolimits_{k = 1}^n {{\varepsilon _k}{d_k}|{|_p} \leq \left( {p^* - 1} \right)||} \sum\nolimits_{k = 1}^n {{d_k}|{|_p}}$$
and the constant p* – 1 is best possible. Furthermore, strict inequality holds if and only if p ≠ 2 and \(||\sum\nolimits_{k = 1}^n {{d_k}|{|_p} >0}\). This improves an earlier inequality of the author by giving the best constant and conditions for equality. The inequality holds with the same constant if ε is replaced by a real-valued predictable sequence uniformly bounded in absolute value by 1, thus yielding a similar inequality for stochastic integrals. The underlying method rests on finding an upper or a lower solution to a novel boundary value problem, a problem with no solution (the upper is not equal to the lower solution) except in the special case p = 2. The inequality above, in combination with the work of Ando, Dor, Maurey, Odell, Olevskiï, Pelczynski, and Rosenthal, implies that the unconditional constant of a monotone basis of L p (0,1) is p * – 1. The paper also contains a number of other sharp inequalities for martingale transforms and stochastic integrals. Along with other applications, these provide answers to some questions that arise naturally in the study of the optimal control of martingales.


Strict Inequality Continuous Extension Good Constant Sharp Inequality Haar System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    AndoT. (1966). Contractive projections in L pspaces. Pacific J. Math, 17391-405.MATHMathSciNetGoogle Scholar
  2. 2.
    BichtelerK. (1981). Stochastic integration and L p-theory of semimartingales. Ann. Probab. 949-89.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    BurkholderD. L. (1966). Martingale transforms. Ann. Math. Statist 371494-1504.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    BurkholderD. L. (1979). A sharp inequality for martingale transforms. Ann. Probab. 7858-863.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    BurkholderD. L. (1981). A geometrical characterization of Banach spaces in which martingale difference sequences are unconditional. Ann. Probab. 9997-1011.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    BurkholderD. L. (1982). A nonlinear partial differential equation and the unconditional constant of the Haar system in Lp. Bull. Amer. Math. Soc. (N.S.) 7591-595.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Burkholder, D. L. (1983). A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions. Conference on Harmonic Analysis in Honor of Antoni Zygmund1 270-286. Edited by William Beckner, Alberto P. Calderón, Robert Fefferman, and Peter W. Jones. Wadsworth, Belmont, California.Google Scholar
  8. 8.
    ClarksonJ. A. (1936). Uniformly convex spaces. Trans. Amer. Math. Soc. 40396-414.MATHMathSciNetGoogle Scholar
  9. 9.
    DellacherieC. and Meyer, P.-A. (1980). Probabilités et potentiel: Théorie des martingales. Hermann, Paris.MATHGoogle Scholar
  10. 10.
    DOOB, J. L. (1953). Stochastic Processes. Wiley, New York.MATHGoogle Scholar
  11. 11.
    DOOB, J. L. (1954). Semimartingales and subharmonic functions. Trans. Amer. Math. Soc. 7786-121.MATHMathSciNetGoogle Scholar
  12. 12.
    DorL. E. and OdellE. (1975). Monotone bases in L p . Pacific J. Math. 6051-61.MATHMathSciNetGoogle Scholar
  13. 13.
    GamelinT. W. (1978). Uniform Algebras and Jensen Measures. Cambridge University Press, London.MATHGoogle Scholar
  14. 14.
    LindenstraussJ. and PelczynskiA. (1971). Contributions to the theory of the classical Banach spaces. J. Funct. Anal. 8225-249.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    LindenstraussJ. and Tzafriri, L. (1979). Classical Banach SpacesII: Function Spaces. Springer, New York.MATHGoogle Scholar
  16. 16.
    MarcinkiewiczJ. (1937). Quelques théorèmes sur les séries orthogonales. Ann. Soc. Polon. Math. 1684-96.Google Scholar
  17. 17.
    MaureyB. (1975). Système de Haar. Séminaire Maurey-Schwartz(1974-1975). École Polytechnique, Paris.Google Scholar
  18. 18.
    OlevskiïA. M. (1967). Fourier series and Lebesgue functions. Uspehi Mat. Nauk 22237-239. (Russian)MathSciNetGoogle Scholar
  19. 19.
    OlevskiïA. M. (1975). Fourier Series with Respect to General Orthogonal Systems. Springer, New York.MATHGoogle Scholar
  20. 20.
    PaleyR. E. A. C. (1932). A remarkable series of orthogonal functions I. Proc. London Math. Soc. 34241-264.MATHCrossRefGoogle Scholar
  21. 21.
    PelczynskiA. and RosenthalH. P. (1975). Localization techniques in L pspaces. Studia Math. 52263-289.MATHMathSciNetGoogle Scholar
  22. 22.
    PichoridesS. K. (1972). On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov. Studia Math. 44165-179.MATHMathSciNetGoogle Scholar
  23. 23.
    RIESZ, M. (1927). Sur les fonctions conjuguées. Math. Z. 27218-244.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    SchauderJ. (1928). Eine Eigenschaft fes barschen Orthogonalsystems. Math. Z. 28317-320.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    StarrN. (1965). On an operator limit theorem of Rota. Ann. Math. Statist. 361864-1866.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    TzafririL. (1969). Remarks on contractive projections in Lp-spaces. Israel J. Math. 79-15.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Department of StatisticsPurdue UniversityWest LafayetteUSA
  2. 2.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations