Weak Inequalities for Exit Times and Analytic Functions

  • Burgess Davis
  • Renming Song
Part of the Selected Works in Probability and Statistics book series (SWPS)


We give a method for obtaining inequalities of the form
$$ \mathop {\sup}\limits_{\lambda >0} \Phi \left( \lambda \right)P\left( {f >\lambda } \right) \leq \,c \mathop {\sup}\limits_{\lambda >0} \Phi \,(\lambda)P\left( {g >\lambda } \right)$$
and then use it to obtain some results about exit times of Brownian motion and analytic functions supplementing those of [3].


Brownian Motion Maximal Function Harmonic Measure Exit Time Positive Zero 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Baernstein, Integral means, univalent functions and circular symmetrization, Acta Math, 133 (1974), pp. 139-169.CrossRefMathSciNetGoogle Scholar
  2. 2.
    D. L. Burkholder, Distribution function inequalities for martingales, Ann. Prob. 1 (1973), pp. 19-42.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    D. L. Burkholder, Exit times of Brownian motion, harmonic majorization, and Hardy spaces, Advances in Math., to appear.Google Scholar
  4. 4.
    D. L. Burkhol der and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970), pp, 249-304.CrossRefMathSciNetGoogle Scholar
  5. 5.
    D. L. Burkholder, R. F. Gundy, and M. L. Silverstein, A maximal function characterization of the class H p, Trans. Amer. Math. Soc, 157 (1971), pp. 137-153.MATHMathSciNetGoogle Scholar
  6. 6.
    C. Carathéodory, Conformai representation, 2nd edition, Cambridge 1952.Google Scholar
  7. 7.
    J. L. Doob, Semimartingales and subhannonic functions, Trans. Amer. Math. Soc, 77 (1954), pp. 86-121.MATHMathSciNetGoogle Scholar
  8. 8.
    J. L. Doob, Conformally invariant cluster value theory, Illinois J. Math. 5 (1961), pp. 521-549.MATHMathSciNetGoogle Scholar
  9. 9.
    H. P. McKean, Stochastic integrals, New York 1969.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematics and Department of StatisticsPurdue UniversityWest LafayetteUSA
  2. 2.Department of MathematicsUniversity of IllinoisUrbanaUSA

Personalised recommendations