Evaluation Criteria of Carotid Artery Atherosclerosis: Noninvasive Multimodal Imaging and Molecular Imaging

  • Rakesh Sharma
  • Jose Katz


Carotid artery stenosis is a disease developed due to cardiovascular ­incapacity and cerebral infarction. Carotid artery stenosis is related with deep, subcortical, or cortical infarctions. In presurgery evaluation, asymptomatic dyslipidemia or symptomatic carotid artery stenosis are evaluated by imaging. Cardiovascular ischemia is occasionally interpreted as active and silent infarcts. In advanced atherosclerosis, better information is extracted out from presurgery clinical symptoms combined with dyslipidemia evaluation and associated information from cerebral angiography, carotid duplex ultrasound, computer-assisted topographic angiography (CTA) and magnetic resonance angiography (MRA). In present chapter, the central idea is that carotid artery disease is manifestation of structural and or molecular changes visible in the carotid artery wall and physical characteristics of flowing blood. To evaluate the carotid artery disease burden and plaque type, a new criterion of ­presurgery evaluation was proposed in this chapter by imaging atherosclerosis followed by postsurgery plaque characterization using biomarkers in endarterectomy samples (changes in tissue expression of mRNA-encoded inflammation modulatory proteins, oxidation, lipid transport, calcification, proteolysis, or hemorrhage, oligonucleotide microarray analysis, and high in situ hybridization – GenePaint and immunohistochemistry – ProteinPaint) with or without statin treatment of carotid artery disease. Present time, new multimodal molecular imaging techniques are emerging to give better new insights of plaque staging by molecular events in carotid artery disease progress and its evaluation.


Pre-surgery evaluation Carotid artery disease Atherosclerosis Metabolic & molecular geography NMR-biochemical signature Molecular imaging Endarterectomy Molecular-metabolic paint 


  1. 1.
    Estol CJ. Dr C. Miller Fisher and the history of carotid artery disease, Stroke, 27, (1996), 559–566.PubMedGoogle Scholar
  2. 2.
    Stary HC, Bleakley C, Dinsmore RE, Fuster V, Glagov S, Instill W, Rosenfield ME, Schwartz CJ, Wagner WD, Wissler RW. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis, Arterioscler Thromb Vasc Biol, 15(9), (1995), 1512–1531.PubMedGoogle Scholar
  3. 3.
    Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C. Classification of human carotid atherosclerosis lesions with in vivo multicontrast magnetic resonance imaging, Circulation, 106, (2002), 1368–1373.PubMedCrossRefGoogle Scholar
  4. 4.
    Pasternak RC, Smith SC, Bairey-Merz CN, Grundy SM, Cleeman JI, Lenfant C, American College of Cardiology, American Heart Association, National Heart, Lung and Blood Institute. ACC/AHA, NHLBI clinical advisory on the use and safety of statins, J Am Coll Cardiol, 40, (2002), 567–572.PubMedCrossRefGoogle Scholar
  5. 5.
    Silvera SS, Aidi HE, Rudd JH, Mani V, Yang L, Farkouh M, Fuster V, Fayad ZA. Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries, Atherosclerosis, 207(1), (2009), 139–143.PubMedCrossRefGoogle Scholar
  6. 6.
    Turu MM, Krupinski J, Catena E, Rosell A, Montaner J, Rubio F, Sabin JA, Cairols M, Badimon L. Intraplaque MMP-8 levels are increased in asymptomatic patients with carotid plaque progression on ultrasound, Atherosclerosis, 187(1), (2006), 161–169.PubMedCrossRefGoogle Scholar
  7. 7.
    Koenig W, Khuseyinova N. Biomarkers of atheroclerosis plaque instability and rapture. Atheroscler Thrmob Vascu Biol, 27, (2007), 15–26.Google Scholar
  8. 8.
    Kleinstreuer C, Nazemi M, Archie JP. Hemodynamics analysis of a stenosed carotid bifurcation and its plaque mitigating design, J Biomech Eng, 113 (3), (1991), 330–335.PubMedCrossRefGoogle Scholar
  9. 9.
    Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophages, and smooth muscle cell content, Br Heart J, 69, (1993), 377–381.PubMedCrossRefGoogle Scholar
  10. 10.
    Seeger MD, Barratt BS, Lawson GA, Klingman N. The relationship between carotid plaque composition, plaque morphology, and neurologic symptoms, J Surg Res, 58, (1995), 330–336.PubMedCrossRefGoogle Scholar
  11. 11.
    Bortolani EM, Ghilardi G, Pizzocari P, Coppini P, Longhi F, Trimarchi S. Surgery of the carotid: the morphology of plaque and the clinical correlations, Minerva Cardioangiol, 40(10), (1992), 369–374.PubMedGoogle Scholar
  12. 12.
    Wasserman BA, Haacke EM, Debiao L. Carotid plaque formation and its evaluation with angiography, ultrasound, and MR angiography, J Mag Res Imaging, 4, (1994), 515–527.CrossRefGoogle Scholar
  13. 13.
    Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessments strategies, Circulation, 108, (2003), 1664–1672.PubMedCrossRefGoogle Scholar
  14. 14.
    Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessments strategies, Circulation, 108, (2003), 1772–1778.PubMedCrossRefGoogle Scholar
  15. 15.
    Kyriacou E, Pattichis CS, Pattichis MS, Mavrommatis A, Panagiotou S, Christodoulou CI, et al. Classification of atherosclerotic carotid plaques using gray level morphological analysis on ultrasound images. In: Maglogiannis I, Karpouzis K, and Bramer M (Eds) IFIP Internal Federation for Information Processing. V204, Artificial Intelligence Applications and Innovations, 2006, Boston, Springer, pp. 737–744.Google Scholar
  16. 16.
    Hyun S, Kleinstreuer C, Archie JP. Computational analysis of effects of external carotid artery flow and occlusion on adverse carotid bifurcation hemodynamics, J Vasc Surg, 37(6), (2003), 1248–1254.PubMedCrossRefGoogle Scholar
  17. 17.
    Glor FP, Ariff B, Hughes AD, Crowe LA, Verdonck PR, Barratt DC, McG Thom SA, Firmin DN, Xu XY. Image-based carotid flow reconstruction: a comparison between MRI and ultrasound, Physiol Meas, 25, (2004), 1495–1509.PubMedCrossRefGoogle Scholar
  18. 18.
    Sui B, Gao P, Lin Y, Gao B, Liu L. Blood flow pattern and wall shear stress in the internal carotid arteries of healthy subjects, Acta Radiol, 49(7), (2008), 806–814.PubMedCrossRefGoogle Scholar
  19. 19.
    Cebral JR, Yim PJ, Lohner R, Soto O, Choyke PL. Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging, Acad Radiol, 9, (2002), 1286–1299.PubMedCrossRefGoogle Scholar
  20. 20.
    Milner JS, Moore JA, Rutt BK, Steinman DA. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects, J Vasc Surg, 28(1), (1998), 143–156.PubMedCrossRefGoogle Scholar
  21. 21.
    Sharma, R. MR Imaging in carotid artery atherosclerosis plaque characterization, Magn Reson Med Sci, 1(4), (2002), 217–233.PubMedCrossRefGoogle Scholar
  22. 22.
    Sharma, R. A device for MR imaging of atherosclerosis plaque in carotid endarterectomy specimens ex vivo, Magn Reson Med Sci, 1(1), (2002), 116–124.Google Scholar
  23. 23.
    Morrisett J, Vick W, Sharma R, Lawrie G, Reardon M, Ezell E, Schwartz J, Hunter G, Gorenstein D. Discrimination of components in atherosclerotic plaques from human carotid endarterectomy specimens by MRI in vivo, J Magn Reson Imaging, 21(5), (2003), 468–474.Google Scholar
  24. 24.
    Sharma R, Singh RB, Gupta RK. A Segmentation Method for Carotid Artery Atherosclerosis Plaque for MRI Contrast and MRI Features, Oxidative Stress Markers in Coronary and Carotid Plaque 16th IEEE Symposium on Computer-Based Medical Systems (CBMS’03) p. 323.
  25. 25.
    North American Symptomatic Carotid Endarterectomy Trial (NASCET) Steering Committee. North American Symptomatic Carotid Endarterectomy trial. Methods, patient characteristics, and progress, Stroke, 22, (1991), 711–720.Google Scholar
  26. 26.
    Anderson CM, Saloner D, Lee RE, et al. Assessment of carotid artery stenosis by MR angiography: comparison with X-ray angiography and color-coded Doppler ultrasound, AJNR Am J Neuroradiol, 13, (1992), 989–1003.PubMedGoogle Scholar
  27. 27.
    Masaryk AM, Ross JS, DiCello MC, Modic MT, Paranandi L, Masaryk TJ. 3DFT MR Angiography of the carotid bifurcation, Radiology, 179, (1991), 797–804.PubMedGoogle Scholar
  28. 28.
    Anderson CM, Lee RE, Levin DL, Alonso ST, Saloner D. Measurement of internal carotid artery stenosis from MR angiograms, Radiology, 193(1), (1994), 219–226.PubMedGoogle Scholar
  29. 29.
    Korosec FR, Grist TM, Polzin JA, Weber DM, Mistretta CA. MR angiography using velocity-selective preparation pulses and segmented gradient-echo acquisition, Magn Reson Med, 30, (1993), 704–710.PubMedCrossRefGoogle Scholar
  30. 30.
    Yuan C, Murakami JW, Hayes CE, Tsuruda JS, Hatsukami TS, Wildy KS, Ferguson MS, Strandness DE. Phased-array magnetic resonance imaging of the carotid artery bifurcation: preliminary results in health volunteers and a patient with atherosclerotic disease, J Mag Res Imaging, 5, (1995), 561–565.CrossRefGoogle Scholar
  31. 31.
    Liffers A, Quick HH, Herborn CU, Ermert H, Ladd ME. Geomatrical optimization of a phased array coil for high resolution MR imaging of carotid arteries, Magn Reson Med, 50(2), (2003), 439–443.PubMedCrossRefGoogle Scholar
  32. 32.
    Wildy KS, Yuan C, Tsuruda JS, Ferguson MS, Wen N, Subramanian DS, Strandess DE. Atherosclerosis of the carotid artery: evaluation by magnetic resonance angiography, J Magn Reson Imaging, 6, (1996), 726–732.PubMedCrossRefGoogle Scholar
  33. 33.
    Shinnar M, Fallon JT, Wehrli S, Levin M, Dalmacy D, Fayad ZA, Badimon JJ, Harrington E, Fuster V. Diagnostic accuracy of ex vivo MRI for human atherosclerotic plaque characterization, Arterioscler Thromb Vasc Biol, 19, (1999), 2756–2761.PubMedGoogle Scholar
  34. 34.
    Skinner MP, Yuan C, Mitsumori L, Hayes CE, Raines EW, Nelson JA, Ross R. Serial magnetic resonance imaging of experimental atherosclerosis detects lesion fine structure, progression and complications in vivo, Nat Med, 1(1), (1995), 69–73.PubMedCrossRefGoogle Scholar
  35. 35.
    Meindl S, Jungke M, Bielke G, von Seelan W, Grigat M, Pedrosa P, Higer HP. Using an “Information Manager” as a component of a tissue classification system in NMR tomography. In: Higer HP and Bielke G (Eds) Tissue Characterization in MR Imaging, Berlin, Springer-Verlag, (1990), 139–144.Google Scholar
  36. 36.
    Berr SS, Hurt NS, Ayers CR, Snell JW, Merickel MB. Assessment of the reliability of the determination of carotid artery lumen sizes by quantitative image processing of MR angiograms and images, Magn Reson Imaging, 13, (1995), 827–835.PubMedCrossRefGoogle Scholar
  37. 37.
    Sharma R, Singh RB. MRI of coronary artery atherosclerosis in rabbits: histopathology MRI correlation and atheroma characterization, Thromb J, 2(1), (2004), 5.PubMedCrossRefGoogle Scholar
  38. 38.
    Kass M, Witkin A, Terzopoulos D. “SNAKES: Active Contour Models”, Proceedings of First International Conference on Computer Vision, 1987, pp. 259–269.Google Scholar
  39. 39.
    Yuan C, Lin E, Hwang JN. Closed contour edge detection of blood vessel lumen and outer wall boundaries in black-blood MR images, Magn Reson Imaging, 17, (1999), 257–266.PubMedCrossRefGoogle Scholar
  40. 40.
    Kroon AA, van Asten WNJC, Stalenhoef AFH: Effect of apheresis of low-density lipoprotein on peripheral vascular disease in hypercholesterolemic patients with coronary artery disease, Ann Intern Med, 125, (1996), 945–954.PubMedGoogle Scholar
  41. 41.
    Schreiner PJ, Heiss G, Tyroler HA, Morrisett JD, Davis CE, Smith R. Race and gender differences in the association of Lp(a) with carotid artery wall thickness, Arterioscler Thromb Vasc Biol, 16(3), (1996), 471–478.PubMedGoogle Scholar
  42. 42.
    Hodis HN, Mack WJ, LaBree L, Selzer RH, Liu C, Alanpovic P, Kwong_Fu H, Azen SP. Reduction in carotid arterial wall thickness using lovastatin and dietary therapy, Ann Intern Med, 143, (1996), 548–556.Google Scholar
  43. 43.
    Mercuri M, Bond MG, Sintori CR, Veglia F, Crepaldi G, Ferugho FS, Descovich G, Ricci G, Rubba P, Mancini M, et al. Pravastatin reduces carotid intima media thickness progression in asymptomatic hypercholesterolemic mediterannean population: The Carotid Atheroslcerosis Italian Ultrasound Study, Am J Med 101, (1996), 627–634.PubMedCrossRefGoogle Scholar
  44. 44.
    Suurkla M, Agewall S, Fagerberg B, Wendelhag I, Wikstrand J, for the Risk Intervention Study (RIS) Group. Multiple risk intervention in high risk hypertensive patients: a 3 year ultrasound study of intima-media thickness and plaques in the carotid artery, Arterioscler Thromb Vasc Biol, 16, (1996), 462–470.Google Scholar
  45. 45.
    Furberg CD, Adams HP Jr, Applegate WB, Byington RP, Espeland MA, Hartwell T, Hunninghake DB, Leflkowitz DS, Probstfield J, Riley WA, et al., for the Asymptomatic Carotid Artery Progression Study (ACAPS) Research Group. Effect of lovastatin on early carotid atherosclerosis and cardiovascular events, Circulation, 90, 1994, 1679–1687.PubMedGoogle Scholar
  46. 46.
    Crouse JR III, Byington RP, Bond MG, Espeland MA, Craven TE, Sprinkle JW, McGovern ME, Furberg CD. Pravastatin, lipids, and atherosclerosis in the carotid arteries (PLAC-11), Am J Cardiol, 75, 1995, 455–459.PubMedCrossRefGoogle Scholar
  47. 47.
    Salonen R, Nyyssönen K, Porkkala E, Rummukainen J, Belder R, Park J-S, Salonen JT. Kuopio Atherosclerosis Prevention Study (KAPS): a population-based primary preventive trial of the effect of LDL lowering on atherosclerotic progression in carotid and femoral arteries, Circulation, 92, (1995), 1758–1764.PubMedGoogle Scholar
  48. 48.
    Crisby M, Fredricksson G, Shah PK, Yano J, Zhu J, Nilsoon J. Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: implications for plaque stabilization, Circulation, 103(7), (2001), 926–933.PubMedGoogle Scholar
  49. 49.
    Goldstein H. Multilevel Statistical Models, Second Edition. New York, Wiley Interscience, (1995), 121–136.Google Scholar
  50. 50.
    Huttner HJM, van den Eeden P. The Multilevel Design: A Guide with Annotated Bibliography, 1980–1993. Westort, CO, Greenwood Press, 1995.Google Scholar
  51. 51.
    Kreft I, deLeeuw J. Introducing Multilevel Modeling. Thousand Oaks, CA, Sage Pub, 1998.Google Scholar
  52. 52.
    Insull W Jr. The problem of compliance to cholesterol altering therapy, J Intern Med, 241, (1997), 317–325.PubMedCrossRefGoogle Scholar
  53. 53.
    Adams GJ, Simoni DM, Bordelon CB, Vick W, Kimball KT, Insull W, Morrisett JD. Bilateral symmetry of human carotid artery atherosclerosis, Stroke, 222, (2003), 2575–2580.Google Scholar
  54. 54.
    King R, Dalquist HD. Method of performing endarterectomy. US patent 4962755, issue date Oct 16, 1990.Google Scholar
  55. 55.
    McCann RL. Surgical management of carotid artery atherosclerotic disease, South Med J, 86(10), 1993, 2S23–2S28.PubMedGoogle Scholar
  56. 56.
    Guo W, Morrisett JD, DeBakey ME, Lawrie GM, Hamilton JA. Quantitation in situ of crystalline cholesterol and calcium phosphate hydroxyapatite in human atherosclerotic plaques by solid state magic angle spinning NMR, Arterioscler Thromb Vasc Biol, 20, (2000), 2682–2688.PubMedGoogle Scholar
  57. 57.
    Guo W, Morrisett JD, Lawrie GM, DeBakey ME, Hamilton JA. Identification of different lipid phases and calcium phosphate deposits in human carotid artery plaques by MAS NMR spectroscopy, Mag Reson Med, 39, (1998), 184–189.PubMedCrossRefGoogle Scholar
  58. 58.
    Sharma R, Shriniwas BD, Sharma A. Human Carotid Artery: Segmentation Methods in Atherosclerosis Imaging. World Heart Research Book. Edn Halberg F, Singh RB, (2009); V 1, 193–212.Google Scholar
  59. 59.
    Sharma R, Sharma A. Segmentation methods in atherosclerosis vascular imaging, Informa Med Slov, 11(2), (2006), 52–69.Google Scholar
  60. 60.
    Burke AP, Farb A, Malcolm GT, Liang Y-H, Smialek JE, Virmani R. Plaque rupture and sudden death related to exercise in men with coronary artery disease, JAMA 281, (1999), 921–926.PubMedCrossRefGoogle Scholar
  61. 61.
    Choudhary S, Higgins CL, Chen IY, Reardon M, Lawrie G, Vick GW III, Karmonik C, Via DP, Morrisett JD. Quantitation and localization of matrix metalloproteinases and their inhibitors in human carotid endarterectomy tissues, Arterioscler Thromb Vasc Biol, 26(10), (2006), 2351–2358.PubMedCrossRefGoogle Scholar
  62. 62.
    WeIgus HM, Campbell EJ, Cury JD, Eisen AZ, Senior RM, Wilheim SM, Goldberg GI. Neutral metalloproteinases produced by human mononuclear phagocytes during cellular development: enzyme profile, regulation, and expression, J Clin Invest, 86, (1990), 1496–1502.CrossRefGoogle Scholar
  63. 63.
    Ling ZL, Ziekle R, Cheng L, Xiao R, Crow MT, Stetler-Stevenson WG, Froelich J, Lakatta EG. Increased expression of 72kD type IV collagenase (MMP-2) in human atherosclerotic lesions, Am J Pathol, 148, (1996) 121–128.Google Scholar
  64. 64.
    Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaque, J Clin Invest, 942, (1994), 2493–2503.CrossRefGoogle Scholar
  65. 65.
    Sharma R. Katz JK. Preliminary studies on human aldosterone synthase (CYP11B2) gene polymorphisms, metalloprotease-9, apoptosis, and carotid atherosclerosis plaque size by proton MRI, J Renin Angiotensin Aldosterone Sys, 11(3), (2009), 198–204.Google Scholar
  66. 66.
    Nikkari ST, O’Brien KD, Ferguson M, Hatsukami T, WeIgus HG, Algers CE, Clowes AW. Interstitial collagenase (MMP-1) expression in human carotid atherosclerosis, Circulation, 92, (1995), 1393–1398.PubMedGoogle Scholar
  67. 67.
    Oksala N, Levula M, Airla N, Pelto-Huikko M, Ortiz RM, Järvinen O, Salenius JP, Ozsait B, Komurcu-Bayrak E, Erginel-Unaltuna N, Huovila AP, Kytömäki L, Soini JT, Kähönen M, Karhunen PJ, Laaksonen R, Lehtimäki T. ADAM-9, ADAM-15, and ADAM-17 are upregulated in macrophages in advanced human atherosclerotic plaques in aorta and carotid and femoral arteries – Tampere vascular study, Ann Med, 41(4), (2009), 279–290.PubMedCrossRefGoogle Scholar
  68. 68.
    Feng Y, Yang JH, Huang H, Kennedy SP, Turi TG, Thompson JF, Libby P, Lee RT. Transcriptional profile of mechanically induced genes in human vascular smooth muscle cells. Circ Res, 85, (1999), 1118–1123.PubMedGoogle Scholar
  69. 69.
    Nuotio K, Isoviita PM, Saksi J, IJas P, Pitkaniemi J, Sonninen R, Soinne L, Saimanen E, Salonen O, Kovanen PT, Kaste M, Lindsberg PJ. Adipophilin expression is increased in symptomatic carotid atherosclerosis, Stroke, 38, (2007), 1791.PubMedCrossRefGoogle Scholar
  70. 70.
    Hiltunen MO, Tuomisto TT, Niemi M, Bräsen JH, Rissanen TT, Törönen P, Vajanto I, Ylä-Herttuala S. Changes in gene expression in atherosclerotic plaques analyzed using DNA array, Atherosclerosis, 165(1), (2002), 23–32.PubMedCrossRefGoogle Scholar
  71. 71.
    Nakai K, Oyanagi M, Hitomi J, Ogasawara K, Inoue T, Kobayashi M, Nakai K, Suwabe A, Habano W, Baba T, Yoshida H, Ogawa A. Screening the single nucleotide polymorphisms in patients with internal carotid artery stenosis by oligonucleotide-based custom DNA array, Bioinf Biol Insights, 1(1), (2007), 63–69.Google Scholar
  72. 72.
    Sharma R, Katz JK. Taxotere chemosensitivity evaluation in mice prostate tumor: validation and diagnostic accuracy of quantitative measurement of tumor characteristics by MRI, PET, and histology of mice tumor, Technol Cancer Res Treat, (7)3, (2008), 155–268.Google Scholar
  73. 73.
    Papazoglou T, Papaioannou T, Arakawa K, Fishbein M, Marmarelis VZ, Grundfest WS. Control of excimer laser aided tissue ablation via laser-induced fluorescence monitoring, Appl Opt, 29, (1990), 4950–4955.PubMedCrossRefGoogle Scholar
  74. 74.
    Friedlander AH, Freymiller EG. Detection of radiation accelerated atherosclerosis of the carotid artery by panoramic radiography, J Am Dent Assoc, 134(10), (2003), 1361–1365.PubMedGoogle Scholar
  75. 75.
    Shriniwas BD, Sharma R, Sharma A. Extended applications of picotechnology to measure immunoactive biomarkers. Nanotech NSTI 2009 Conference and EXPO Houston, 2009 May 3 WE62.506.Google Scholar
  76. 76.
    Arakawa K, Isoda K, Ito T, Nakajima K, Shibuya T, Ohsuzu F. Fluorescence analysis of biochemical constituent identifies atherosclerostic plaques with a thin fibrous cap, Arterioscler Thromb Vasc Biol, 22, (2002), 1002–1007.PubMedCrossRefGoogle Scholar
  77. 77.
    Chang K, Jaffer F. Advances in fluorescence imaging of the cardiovascular system, J Nucl Cardiol, 15(3), (2008), 417–428.PubMedCrossRefGoogle Scholar
  78. 78.
    Lu H, Rateri DL, Daugherty A. Immunostaining of mouse atherosclerotic lesions. In: Sreejayan N and Ren J (Eds) Vascular Biology Protocols, Methods in Mol Med, vol 139, 2007, Torowa, NJ, Humana Press Inc., pp. 77–94.CrossRefGoogle Scholar
  79. 79.
    Dollery CM, Owen CA, Sukhova GK, Krettek A, Shapiro SD, Libby P. Neutrophil elastase in human atherosclerotic plaques: production by macrophages, Circulation, 107(22), (2003), 2829–2836.PubMedCrossRefGoogle Scholar
  80. 80.
    Callahan RJ, Bogdanov A Jr, Fischman AJ, Brady TJ, Weissleder R. Preclinical evaluation and phase I clinical trial of a 99mTc-labeled synthetic polymer used in blood pool imaging, AJR Am J Roentgenol, 171(1), (1998), 137–143.PubMedGoogle Scholar
  81. 81.
    Jaffer FA, Kim DE, Quinti L, Tung CH, Aikawa E, Pande AN, Kohler RH, Shi GP, Libby P, Weissleder R. Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor, Circulation, 115(17), (2007), 2292–2298.PubMedCrossRefGoogle Scholar
  82. 82.
    Jaffer FA, Vinegoni C, John MC, Aikawa E, Gold HK, Finn AV, Ntziachristos V, Libby P, Weissleder R. Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis, Circulation, 118(18), (2008), 1802–1809.PubMedCrossRefGoogle Scholar
  83. 83.
    Deguchi JO, Aikawa M, Tung CH, Aikawa E, Kim DE, Ntziachristos V, Weissleder R, Libby P. Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo, Circulation, 114(1), (2006), 55–62.PubMedCrossRefGoogle Scholar
  84. 84.
    Blum G, von Degenfeld G, Merchant MJ, Blau HM, Bogyo M. Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes, Nat Chem Biol, 3(10), (2007), 668–677.PubMedCrossRefGoogle Scholar
  85. 85.
    Ntziachristos V, Schellenberger EA, Ripoll J, Yessayan D, Graves E, Bogdanov A Jr, Josephson L, Weissleder R. Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate, Proc Natl Acad Sci USA, 101(33), (2004), 12294–12299.PubMedCrossRefGoogle Scholar
  86. 86.
    Shepherd J, Hilderbrand SA, Waterman P, Heinecke JW, Weissleder R, Libby P. A fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages, Chem Biol, 14(11), (2007), 1221–1231.PubMedCrossRefGoogle Scholar
  87. 87.
    Park K, Hong HY, Moon HJ, Lee BH, Kim IS, Kwon IC, Rhee K. A new atherosclerotic lesion probe based on hydrophobically modified chitosan nanoparticles functionalized by the atherosclerotic plaque targeted peptides, J Control Release, 128(3), (2008), 217–223.PubMedCrossRefGoogle Scholar
  88. 88.
    Cheng Z, Levi J, Xiong Z, Gheysens O, Keren S, Chen X, Gambhir SS. Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice, Bioconjug Chem, 17(3), (2006), 662–669.PubMedCrossRefGoogle Scholar
  89. 89.
    Kovar JL, Volcheck W, Sevick-Muraca E, Simpson MA, Olive DM. Characterization and performance of a near-infrared 2-deoxyglucose optical imaging agent for mouse cancer models, Anal Biochem, 384(2), (2009), 254–262.PubMedCrossRefGoogle Scholar
  90. 90.
    Kooi ME, Cappendijk VC, Cleutjens KB, Kessels AG, Kitslaar PJ, Borgers M, Frederik PM, Daemen MJ, van Engelshoven JM. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging, Circulation, 107(19), (2003), 2453–2458.PubMedCrossRefGoogle Scholar
  91. 91.
    Trivedi RA, Mallawarachi C, U-King-Im JM, Graves MJ, Horsley J, Goddard MJ, Brown A, Wang L, Kirkpatrick PJ, Brown J, Gillard JH. Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages, Arterioscler Thromb Vasc Biol, 26(7), (2006), 1601–1606.PubMedCrossRefGoogle Scholar
  92. 92.
    Tang TY, Howarth SP, Li ZY, Miller SR, Graves MJ, U-King-Im JM, Trivedi RA, Walsh SR, Brown AP, Kirkpatrick PJ, Gaunt ME, Gillard JH. Comparison of the inflammatory burden of truly asymptomatic carotid atheroma with atherosclerotic plaques contralateral to symptomatic carotid stenosis: an ultra small superparamagnetic iron oxide enhanced magnetic resonance study, J Neurol Neurosurg Psychiatry, 78(12), (2007), 1337–1343.PubMedCrossRefGoogle Scholar
  93. 93.
    Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, Libby P, Swirski FK, Weissleder R. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis, Circulation, 117(3), (2008), 379–387.PubMedCrossRefGoogle Scholar
  94. 94.
    Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P, Weissleder R. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis, Circulation, 114(14), (2006), 1504–1511.PubMedCrossRefGoogle Scholar
  95. 95.
    McCarthy JR, Patel P, Botnaru I, Haghayeghi P, Weissleder R, Jaffer FA. Multimodal nanoagents for the detection of intravascular thrombi, Bioconjug Chem, 20(6), (2009), 1251–1255.PubMedCrossRefGoogle Scholar
  96. 96.
    Cormode DP, Skajaa T, Fayad ZA, Mulder WJ. Nanotechnology in medical imaging: probe design and applications, Arterioscler Thromb Vasc Biol, 29(7), (2009), 992–1000.PubMedCrossRefGoogle Scholar
  97. 97.
    Schmieder AH, Winter PM, Caruthers SD, Harris TD, Williams TA, Allen JS, Lacy EK, Zhang H, Scott MJ, Hu G, Robertson JD, Wickline SA, Lanza GM. Molecular MR imaging of melanoma angiogenesis with alphanubeta3-targeted paramagnetic nanoparticles. Magn Reson Med, 53(3), (2005), 621–627.PubMedCrossRefGoogle Scholar
  98. 98.
    Medarova Z, Pham W, Farrar C, Petkova V, Moore A. In vivo imaging of siRNA delivery and silencing in tumors, Nat Med., 13(3), (2007), 372–377.PubMedCrossRefGoogle Scholar
  99. 99.
    Demos SM, Alkan-Onyuksel H, Kane BJ, Ramani K, Nagaraj A, Greene R, Klegerman M, McPherson DD. In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement, J Am Coll Cardiol, 33(3), (1999), 867–875.PubMedCrossRefGoogle Scholar
  100. 100.
    Flacke S, Fischer S, Scott MJ, Fuhrhop RJ, Allen JS, McLean M, Winter P, Sicard GA, Gaffney PJ, Wickline SA, Lanza GM. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques, Circulation, 104(11), (2001), 1280–1285.PubMedCrossRefGoogle Scholar
  101. 101.
    Neubauer AM, Sim H, Winter PM, Caruthers SD, Williams TA, Robertson JD, Sept D, Lanza GM, Wickline SA. Nanoparticle pharmacokinetic profiling in vivo using magnetic resonance imaging, Magn Reson Med, 60(6), (2008), 1353–1361.PubMedCrossRefGoogle Scholar
  102. 102.
    Frias JC, Williams KJ, Fisher EA, Fayad ZA. Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques, J Am Chem Soc, 126(50), (2004), 16316–16317.PubMedCrossRefGoogle Scholar
  103. 103.
    Li H, Gray BD, Corbin I, Lebherz C, Choi H, Lund-Katz S, Wilson JM, Glickson JD, Zhou R. MR and fluorescent imaging of low-density lipoprotein receptors, Acad Radiol, 11(11), (2004), 1251–1259.PubMedCrossRefGoogle Scholar
  104. 104.
    Hayek SS, Sharma R, Kwon S, Sharma A, Chen CJ. Temperature and magnetic resonance characteristics of zinc, manganese, gadolinium, gold, iron magnetic nanoparticles and cytokine synergy in hyperthermia, J Biomed Sci Eng, 1(3), (2008), 147–209.CrossRefGoogle Scholar
  105. 105.
    Sharma R, Sharma A, Chen CJ. Temperature and magnetic moment characteristics of MNB0.5BZNB0.5BGDBXBFEB(2-X)BOB4B magnetic nanoparticles in Hyperthermia, Nanotech Res J, 2(3), (2008), 26–45.Google Scholar
  106. 106.
    Morawski AM, Winter PM, Yu X, Fuhrhop RW, Scott MJ, Hockett F, Robertson JD, Gaffney PJ, Lanza GM, Wickline SA. Quantitative “magnetic resonance immunohistochemistry” with ligand-targeted (19)F nanoparticles, Magn Reson Med, 52(6), (2004), 1255–1262.PubMedCrossRefGoogle Scholar
  107. 107.
    Louie AY, Hüber MM, Ahrens ET, Rothbächer U, Moats R, Jacobs RE, Fraser SE, Meade TJ. In vivo visualization of gene expression using magnetic resonance imaging, Nat Biotechnol, 18(3), (2000), 321–325.PubMedCrossRefGoogle Scholar
  108. 108.
    Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307(5709), (2005), 538–544.PubMedCrossRefGoogle Scholar
  109. 109.
    Allen M, Bulte JW, Liepold L, Basu G, Zywicke HA, Frank JA, Young M, Douglas T. Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents, Magn Reson Med, 54(4), (2005), 807–812.PubMedCrossRefGoogle Scholar
  110. 110.
    Winter PM, Cai K, Chen J, Adair CR, Kiefer GE, Athey PS, Gaffney PJ, Buff CE, Robertson JD, Caruthers SD, Wickline SA, Lanza GM. Targeted PARACEST nanoparticle contrast agent for the detection of fibrin, Magn Reson Med, 56(6), (2006), 1384–1388.PubMedCrossRefGoogle Scholar
  111. 111.
    Sharma R. Nanoparticles that facilitate imaging of biological tissue and methods of forming the same. United States Patent Application 20090220434.Google Scholar
  112. 112.
    Bovey F, Jelinsky L, Mirau P. Nuclear Magnetic Resonance Spectroscopy. San Diego, Academic Press, 1988.Google Scholar
  113. 113.
    Lanza GM, Abendschein DR, Yu X, Winter PM, Karukstis KK, Scott MJ, Fuhrhop RW, Scherrer DE, Wickline SA. Molecular imaging and targeted drug delivery with a novel, ligand-directed paramagnetic nanoparticle technology, Acad Radiol, 9(2), (2002), S330–S331.PubMedCrossRefGoogle Scholar
  114. 114.
    Oltrona L, Speidel CM, Recchia D, Wickline SA, Eisenberg PR, Abendschein DR. Inhibition of tissue factor-mediated coagulation markedly attenuates stenosis after balloon-induced arterial injury in minipigs, Circulation, 96(2), (1997), 646–652.PubMedGoogle Scholar
  115. 115.
    Hamilton AJ, Huang SL, Warnick D, Rabbat M, Kane B, Nagaraj A, Klegerman M, McPherson DD. Intravascular ultrasound molecular imaging of atheroma components in vivo, J Am Coll Cardiol, 43(3), (2004), 453–460.PubMedCrossRefGoogle Scholar
  116. 116.
    Botnar RM, Buecker A, Wiethoff AJ, Parsons EC Jr, Katoh M, Katsimaglis G, Weisskoff RM, Lauffer RB, Graham PB, Gunther RW, Manning WJ, Spuentrup E. In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent, Circulation, 110(11), (2004), 1463–1466.PubMedCrossRefGoogle Scholar
  117. 117.
    Caruthers SD, Neubauer AM, Hockett FD, Lamerichs R, Winter PM, Scott MJ, Gaffney PJ, Wickline SA, Lanza GM. In vitro demonstration using 19F magnetic resonance to augment molecular imaging with paramagnetic perfluorocarbon nanoparticles at 1.5 Tesla, Invest Radiol, 41(3), (2006), 305–312.PubMedCrossRefGoogle Scholar
  118. 118.
    Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA, Allen JS, Lacy EK, Robertson JD, Lanza GM, Wickline SA. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles, Circulation, 108(18), (2003), 2270–2274.PubMedCrossRefGoogle Scholar
  119. 119.
    Cyrus T, Abendschein DR, Caruthers SD, Harris TD, Glattauer V, Werkmeister JA, Ramshaw JA, Wickline SA, Lanza GM. MR three-dimensional molecular imaging of intramural biomarkers with targeted nanoparticles, J Cardiovasc Magn Reson, 8(3), (2006), 535–541.PubMedCrossRefGoogle Scholar
  120. 120.
    Corot C, Petry KG, Trivedi R, Saleh A, Jonkmanns C, Le Bas JF, Blezer E, Rausch M, Brochet B, Foster-Gareau P, Balériaux D, Gaillard S, Dousset V. Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging, Invest Radiol, 39(10), (2004), 619–625.PubMedCrossRefGoogle Scholar
  121. 121.
    Trivedi RA, U-King-Im JM, Graves MJ, Cross JJ, Horsley J, Goddard MJ, Skepper JN, Quartey G, Warburton E, Joubert I, Wang L, Kirkpatrick PJ, Brown J, Gillard JH. In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI, Stroke, 35(7), (2004), 1631–1635.PubMedCrossRefGoogle Scholar
  122. 122.
    Sirol M, Itskovich VV, Mani V, Aguinaldo JG, Fallon JT, Misselwitz B, Weinmann HJ, Fuster V, Toussaint JF, Fayad ZA. Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging, Circulation, 109(23), (2004), 2890–2896.PubMedCrossRefGoogle Scholar
  123. 123.
    Perez JM, Josephson L, O’Loughlin T, Högemann D, Weissleder R. Magnetic relaxation switches capable of sensing molecular interactions, Nat Biotechnol, 20(8), (2002), 816–820.PubMedGoogle Scholar
  124. 124.
    Jaffer FA, Libby P, Weissleder R. Optical and multimodal molecular imaging insight into atherosclerosis, Arterioscler Thromb Vasc Biol, 29(7), (2009), 1017–1024.PubMedCrossRefGoogle Scholar
  125. 125.
    Sharma R, Kwon S. New applications of nanoparticles in cardiovascular imaging, J Exp Nanosci, 2(2), (2007), 139–146.Google Scholar
  126. 126.
    Bagnato C, Thumar J, Mayya V, Hwang S, Zebroski H, Claffey KP, Haudenschild C, Eng JK, Lungren DH, Han DK. Proteomics analysis of human coronary atherosclerostic plaque, Mol Cell Proteomics, 6, (2007), 1088–1102. PubMedCrossRefGoogle Scholar
  127. 127.
    Sharma R. Troponin T. A search of superparamagnetic iron-oxide bound antitroponin nanoparticle for magnetic resonance imaging, Int J Biological Frontiers, 16(2), (2010), 7–24.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Rakesh Sharma
    • 1
    • 2
    • 3
  • Jose Katz
    • 4
  1. 1.Department of MedicineColumbia UniversityNew YorkUSA
  2. 2.Center of NanobiotechnologyFlorida State University and Tallahassee Memorial HospitalTallahasseeUSA
  3. 3.Innovations and Solutions Inc, USATallahasseeUSA
  4. 4.Dr katz’s Cardiology CentersNew YorkUSA

Personalised recommendations