Skip to main content

Intravascular Photoacoustic and Ultrasound Imaging: From Tissue Characterization to Molecular Imaging to Image-Guided Therapy

  • Chapter
  • First Online:
Atherosclerosis Disease Management

Abstract

Successful diagnosis and treatment of atherosclerosis demands imaging modalities that can characterize the composition of atherosclerotic plaques, stage the disease, and guide interventional therapy. In this chapter, combined intravascular photoacoustic (IVPA) and intravascular ultrasound (IVUS) imaging is used to address these issues. Based on the difference in optical absorption spectra, lipid-rich tissues can be differentiated using spectroscopic IVPA imaging. Using gold nanoparticles as contrast agent, events happening at the molecular and cellular levels may be visualized in IVPA images. IVPA imaging can also monitor stent deployment during interventional therapy procedures. Design of integrated IVUS/IVPA catheters is discussed. Based on the structural information provided by IVUS images, IVPA images may add further clinically relevant information, helping the management of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

IVPA:

Intravascular photoacoustic

IVUS:

Intravascular ultrasound

PVA:

Polyvinyl alcohol

Au NPs:

Gold nanoparticles

CT:

Computational tomography

MRI:

Magnetic resonance imaging

LDL:

Low-density lipoprotein

MMP:

Matrix metalloproteinase

mPEG-SH:

Methoxypolyethylene glycol-thiol

PVDF:

Polyvinylidene fluoride

IgG:

Immunoglobulin G

3D:

Three dimension

References

  1. S Nissen, P Yock (2001), Intravascular ultrasound novel pathophysiological insights and current clinical applications, Circulation 103: 604–616

    CAS  PubMed  Google Scholar 

  2. BD MacNeill, HC Lowe, M Takano et al (2003), intravascular modalities for detection of vulnerable plaque: current status, Arterioscler. Thromb. Vasc. Biol. 23: 1333–1342

    Article  CAS  PubMed  Google Scholar 

  3. PJ Fitzgerald, PG Yock (1993), Mechanisms and outcomes of angioplasty and atherectomy assessed by intravascular ultrasound imaging, J. Clin. Ultrasound 21: 579–588

    Article  CAS  PubMed  Google Scholar 

  4. F Damian, S Udo, WH Hans (1998), Comparison of angioscopic, intravascular ultrasonic, and angiographic detection of thrombus in coronary stenosis, Am. J. Cardiol. 82: 1273–1275

    Article  Google Scholar 

  5. CL de Korte, G Pasterkamp, AF van der Steen et al (2000), Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro, Circulation 102: 617–623

    PubMed  Google Scholar 

  6. A König, MP Margolis, R Virmani et al (2008), Technology Insight: in vivo coronary plaque classification by intravascular ultrasonography radiofrequency analysis, Nat. Clin. Pract. Cardiovasc. Med. 5: 219–229

    Article  PubMed  Google Scholar 

  7. AA Oraevsky, AA Karabutov (2003), Optoacoustic Tomography, CRC Press, Boca Raton

    Google Scholar 

  8. V Gusev, A Karabutov (1991), Laser Optoacoustics, American Institute of Physics, New York

    Google Scholar 

  9. X Wang, Y Pang, G Ku et al (2003), Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain, Nat. Biotechnol. 21: 803–806

    Article  CAS  PubMed  Google Scholar 

  10. HF Zhang, K Maslov, G Stoica et al (2006), Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging, Nat. Biotechnol. 24: 848–851

    Article  CAS  PubMed  Google Scholar 

  11. HP Brecht, DS Prough, YY Petrov et al (2007), In vivo monitoring of blood oxygenation in large veins with a triple-wavelength optoacoustic system, Opt. Express 15: 16261–16269

    Article  CAS  PubMed  Google Scholar 

  12. H Fang, K Maslov, LV Wang (2007), Photoacoustic Doppler effect from flowing small light-absorbing particles, Phys. Rev. Lett. 99: 184501

    Article  PubMed  Google Scholar 

  13. B Wang, AB Karpiouk, SY Emelianov (2008), Design of catheter for combined intravascular photoacoustic and ultrasound imaging, Proceedings of the 2008 IEEE Ultrasonics Symposium: 1150–1153

    Google Scholar 

  14. S Sethuraman, SR Aglyamov, JH Amirian et al (2007), Intravascular photoacoustic imaging using an IVUS imaging catheter, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 54: 978–986

    Article  PubMed  Google Scholar 

  15. S Emelianov, S Aglyamov, J Shah et al (2004), Combined ultrasound, optoacoustic, and elasticity imaging, Proc. SPIE 5320: 101–112

    Article  Google Scholar 

  16. M Naghavi, P Libby, E Falk et al (2003), From vulnerable plaque to vulnerable patient a call for new definitions and risk assessment strategies: Part I, Circulation 108: 1664–1672

    Article  PubMed  Google Scholar 

  17. ME Brezinski, GJ Tearney, BE Bouma et al (1996), Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology, Circulation 93: 1206–1213

    CAS  PubMed  Google Scholar 

  18. SA Prahl (2001), Optical properties spectra, retrieved 2009, http://omlc.ogi.edu/spectra/.

  19. CL Tsai, JC Chen, WJ Wang (2001), Near-infrared absorption property of biological soft tissue constituents, J. Med. Biol. Eng. 21: 7–14

    Google Scholar 

  20. S Sethuraman, JH Amirian, SH Litovsky et al (2008), Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques, Opt. Express 16: 3362–3367

    Article  CAS  PubMed  Google Scholar 

  21. TJ Allen, PC Beard (2009), Photoacoustic characterisation of vascular tissue at NIR wavelengths, Proc. SPIE 7177: 71770A

    Article  Google Scholar 

  22. B Wang, JL Su, et al (2010). Detection of lipid in atherosclerotic vessels using ­ultrasound-guided spectroscopic intravascular photoacoustic imaging. Opt. Express 18(5): 4889–4897

    Google Scholar 

  23. S Mallidi, T Larson, J Tam et al (2009), Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer, Nano Lett. 9: 2825–2831

    Article  CAS  PubMed  Google Scholar 

  24. M Sivaramakrishnan, K Maslov, HF Zhang et al (2007), Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels, Phys. Med. Biol. 52: 1349–1362

    Article  PubMed  Google Scholar 

  25. J Laufer, D Delpy, C Elwell et al (2007), Quantitative spatially resolved measurement of tissue chromophore concentrations, Phys. Med. Biol. 52: 141–168

    Article  CAS  PubMed  Google Scholar 

  26. HM Kwon, G Sangiorgi, EL Ritman et al (1998), Adventitial vasa vasorum in balloon-injured coronary arteries: visualization and quantitation by a microscopic three-dimensional computed tomography technique, J. Am. Coll. Cardiol. 32: 2072–2079

    Article  CAS  PubMed  Google Scholar 

  27. D Vela, L Buja, M Madjid et al (2007), The role of periadventitial fat in atherosclerosis, Arch. Pathol. Lab. Med. 131: 481

    PubMed  Google Scholar 

  28. J Sanz, ZA Fayad (2008), Imaging of atherosclerotic cardiovascular disease, Nature 451: 953–957

    Article  CAS  PubMed  Google Scholar 

  29. A De La Zerda, C Zavaleta, S Keren et al (2008), Carbon nanotubes as photoacoustic molecular imaging agents in living mice, Nat. Nanotechnol. 3: 557–562

    Article  PubMed  Google Scholar 

  30. K Briley-Saebo, W Mulder, V Mani et al (2007), Magnetic resonance imaging of vulnerable atherosclerotic plaques: current imaging strategies and molecular imaging probes, J. Magn. Reson. Imaging 26: 460–479

    Article  PubMed  Google Scholar 

  31. A Conjusteau, SA Ermilov, D Lapotko et al (2006), Metallic nanoparticles as optoacoustic contrast agents for medical imaging, Proc. SPIE 6086: 1605–7422

    Google Scholar 

  32. D Razansky, M Distel, C Vinegoni et al (2009), Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo, Nat. Photon. 3: 412–417

    Article  CAS  Google Scholar 

  33. M Eghtedari, A Oraevsky, JA Copland et al (2007), High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system, Nano Lett. 7: 1914–1918

    Article  CAS  PubMed  Google Scholar 

  34. A Doiron, K Homan, S Emelianov et al (2009), Poly(lactic-co-glycolic) acid as a carrier for imaging contrast agents, Pharm. Res. 26: 674–682

    Article  CAS  PubMed  Google Scholar 

  35. JS Aaron, J Oh, TA Larson et al (2006), Increased optical contrast in imaging of epidermal growth factor receptor using magnetically actuated hybrid gold/iron oxide nanoparticles, Opt. Express 14: 12930–12943

    Article  CAS  PubMed  Google Scholar 

  36. W Rechberger, A Hohenau, A Leitner et al (2003), Optical properties of two interacting gold nanoparticles, Opt. Commun. 220: 137–141

    Article  CAS  Google Scholar 

  37. E Falk (2006), Pathogenesis of atherosclerosis, J. Am. Coll. Cardiol. 47: C7–12

    Article  CAS  PubMed  Google Scholar 

  38. ZS Galis, GK Sukhova, R Kranzhofer et al (1995), Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases, Proc. Natl. Acad. Sci. U.S.A. 92: 402

    Article  CAS  PubMed  Google Scholar 

  39. B Wang, E Yantsen, T Larson et al (2009), Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques, Nano Lett. 9: 2212–2217

    Article  CAS  PubMed  Google Scholar 

  40. B Wang, P Joshi, V Sapozhnikova et al (2010), Intravascular photoacoustic imaging of macrophages using molecularly targeted gold nanoparticles, Proc. SPIE 7564: 75640A

    Google Scholar 

  41. S Mallidi, T Larson, J Aaron et al (2007), Molecular specific optoacoustic imaging with plasmonic nanoparticles, Opt. Express 15: 6583–6588

    Article  CAS  PubMed  Google Scholar 

  42. J Aaron, N Nitin, K Travis et al (2007), Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo, J. Biomed. Opt. 12: 034007

    Article  PubMed  Google Scholar 

  43. D Maintz, RM Botnar, R Fischbach et al (2002), Coronary magnetic resonance angiography for assessment of the stent lumen: a phantom study, J. Cardiovasc. Magn. Reson. 4: 359–367

    Article  PubMed  Google Scholar 

  44. SC Smith Jr, TE Feldman, JW Hirshfeld Jr et al (2006), ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention – summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to Update the 2001 Guidelines for Percutaneous Coronary Intervention), Circulation 113: 156–175

    Article  PubMed  Google Scholar 

  45. M Joner, AV Finn, A Farb et al (2006), Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk, J. Am. Coll. Cardiol. 48: 193–202

    Article  PubMed  Google Scholar 

  46. EL Eisenstein, KJ Anstrom, DF Kong et al (2007), Clopidogrel use and long-term clinical outcomes after drug-eluting stent implantation, JAMA 297: 159–168

    Article  CAS  PubMed  Google Scholar 

  47. DE Kandzari, MB Leon, JJ Popma et al (2006), Comparison of zotarolimus-eluting and sirolimus-eluting stents in patients with native coronary artery disease: a randomized controlled trial, J. Am. Coll. Cardiol. 48: 2440–2447

    Article  CAS  PubMed  Google Scholar 

  48. D Maintz, M Grude, EM Fallenberg et al (2003), Assessment of coronary arterial stents by multislice-CT angiography, Acta. Radiol. 44: 597–603

    CAS  PubMed  Google Scholar 

  49. P Barlis, K Dimopoulos, J Tanigawa et al (2010), Quantitative analysis of intracoronary optical coherence tomography measurements of stent strut apposition and tissue coverage, Int. J. Cardiol. 141:151–156

    Article  PubMed  Google Scholar 

  50. DR Elgort, CM Hillenbrand, S Zhang et al (2006), Image-guided and -monitored renal artery stenting using only MRI, J. Magn. Reson. Imaging 23: 619–627

    Article  PubMed  Google Scholar 

  51. J Hug, E Nagel, A Bornstedt et al (2000), Coronary arterial stents: safety and artifacts during MR imaging, Radiology 216: 781–787

    CAS  PubMed  Google Scholar 

  52. TL Slottow, R Pakala, T Okabe et al (2008), Optical coherence tomography and intravascular ultrasound imaging of bioabsorbable magnesium stent degradation in porcine coronary arteries, Cardiovasc. Revasc. Med. 9: 248–254

    Article  PubMed  Google Scholar 

  53. Y Kawase, K Hoshino, R Yoneyama et al (2005), In vivo volumetric analysis of coronary stent using optical coherence tomography with a novel balloon occlusion-flushing catheter: a comparison with intravascular ultrasound, Ultrasound Med. Biol. 31: 1343–1349

    Article  PubMed  Google Scholar 

  54. IK Jang, BE Bouma, DH Kang et al (2002), Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound, J. Am. Coll. Cardiol. 39: 604–609

    Article  PubMed  Google Scholar 

  55. G Finet, C Cachard, P Delachartre et al (1998), Artifacts in intravascular ultrasound imaging during coronary artery stent implantation, Ultrasound Med. Biol. 24: 793–802

    Article  CAS  PubMed  Google Scholar 

  56. A Gronningsaeter, T Lie, K Bolz et al (1995), Ultrasonographic stent-imaging artifacts, J. Vasc. Invest. 3: 140–149

    Google Scholar 

  57. MC Ziskin, DI Thickman, NJ Goldenberg et al (1982), The comet tail artifact, J. Ultrasound Med. 1: 1–7

    CAS  PubMed  Google Scholar 

  58. JL-S Su, B Wang, SY Emelianov (2009), Photoacoustic imaging of coronary artery stents, Opt. Express 17: 19894–19901

    Article  CAS  PubMed  Google Scholar 

  59. PC Beard, F Perennes, E Draguioti et al (1998), Optical fiber photoacoustic-photothermal probe, Opt. Lett. 23: 1235–1237

    Article  CAS  PubMed  Google Scholar 

  60. J Viator, G Paltauf, S Jacques et al (2001), Design and testing of an endoscopic photoacoustic probe for determination of treatment depth after photodynamic therapy, Proc. SPIE 4256

    Google Scholar 

  61. J-M Yang, K Maslov, H-C Yang et al (2009), Photoacoustic endoscopy, Opt. Lett. 34: 1591–1593

    Article  PubMed  Google Scholar 

  62. AB Karpiouk, B Wang, SY Emelianov (2010), Development of a catheter for combined intravascular ultrasound and photoacoustic imaging, Rev. Sci. Instrum. 81: 014901

    Article  PubMed  Google Scholar 

  63. EL Madsen, JA Zagrebski, MC MacDonald et al (1991), Ultrasound focal lesion detectability phantoms, Med. Phys. 18: 1171–1181

    Article  CAS  PubMed  Google Scholar 

  64. MD Waterworth, BJ Tarte, AJ Joblin et al (1995), Optical transmission properties of homogenised milk used as a phantom material in visible wavelength imaging, Australas. Phys. Eng. Sci. Med. 18: 39–44

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Konstantin Sokolov for his help with bioconjugated gold nanoparticles and the helpful discussions on animal experiments, James Amirian and Dr. Richard Smalling for their assisstance in the animal experiments, and Dr. Silvio Litovsky for his help with the histology analysis. Partial support from National Institutes of Health under grants HL 096981 and HL 084076 is acknowledged. We also would like to acknowledge the technical support from Boston Scientific, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Emelianov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wang, B., Su, J., Karpiouk, A., Yeager, D., Emelianov, S. (2011). Intravascular Photoacoustic and Ultrasound Imaging: From Tissue Characterization to Molecular Imaging to Image-Guided Therapy. In: Suri, J., Kathuria, C., Molinari, F. (eds) Atherosclerosis Disease Management. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7222-4_26

Download citation

Publish with us

Policies and ethics