Clinical Applications of Activated Immune Cells

  • Luciano Castiello
  • Marianna Sabatino
  • Ping Jin
  • Francesco M. Marincola
  • David Stroncek


Adoptive immune therapy has been used for many years to treat viral diseases, hematologic malignancies and cancer. While some diseased have been effectively treated with adoptive T cell immune therapy, many have not. Most successful T cell therapies have required ex vivo T cell expansion and some have required ex vivo T cell sensitization. NK cells and genetically engineered T cells have also be used for adoptive immune therapy. Dendrtic cells have been extensively used and studied to enhance immune therapies and dendritic cell polarized toward Th1 cells appears to be essential to their effectiveness.


Hematopoietic Stem Cell Transplant Chimeric Antigen Receptor Immune Therapy Hematopoietic Stem Cell Transplant Recipient Hematopoietic Stem Cell Transplant Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albert ML, Jegathesan M, Darnell RB. Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells. Nat. Immunol. 2001;2(11):1010–7.PubMedCrossRefGoogle Scholar
  2. Berg M, Lundqvist A, McCoy P, Jr., Samsel L, Fan Y, Tawab A, Childs R. Clinical-grade ex vivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells. Cytotherapy. 2009;11(3):341–55.PubMedCrossRefGoogle Scholar
  3. Berger TG, Strasser E, Smith R, Carste C, Schuler-Thurner B, Kaempgen E, Schuler G. Efficient elutriation of monocytes within a closed system (Elutra) for clinical-scale generation of dendritic cells. J. Immunol. Methods 2005;298(1–2):61–72.PubMedCrossRefGoogle Scholar
  4. Castiello L, Sabatino M, Jin P, Clayberger C, Marincola FM, Krensky AM, Stroncek DF. DC maturation strategies and related pathways: a transcriptional veiw. Curr. Opin. Immunol. 2010.Google Scholar
  5. Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald D, Osman H, Assenmacher M, Billingham L, Steward C, Crawley C, et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J. Exp. Med. 2005;202(3):379–86.PubMedCrossRefGoogle Scholar
  6. Cwynarski K, Ainsworth J, Cobbold M, Wagner S, Mahendra P, Apperley J, Goldman J, Craddock C, Moss PA. Direct visualization of cytomegalovirus-specific T-cell reconstitution after allogeneic stem cell transplantation. Blood 2001;97(5):1232–40.PubMedCrossRefGoogle Scholar
  7. Einsele H, Roosnek E, Rufer N, Sinzger C, Riegler S, Loffler J, Grigoleit U, Moris A, Rammensee HG, Kanz L, et al. Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood 2002;99(11):3916–22.PubMedCrossRefGoogle Scholar
  8. Felzmann T, Witt V, Wimmer D, Ressmann G, Wagner D, Paul P, Huttner K, Fritsch G. Monocyte enrichment from leukapharesis products for the generation of DCs by plastic adherence, or by positive or negative selection. Cytotherapy 2003;5(5):391–8.PubMedCrossRefGoogle Scholar
  9. Fowler DH, Odom J, Steinberg SM, Chow CK, Foley J, Kogan Y, Hou J, Gea-Banacloche J, Sportes C, Pavletic S, et al. Phase I clinical trial of costimulated, IL-4 polarized donor CD4+ T cells as augmentation of allogeneic hematopoietic cell transplantation. Biol. Blood Marrow Transplant. 2006;12(11):1150–60.PubMedCrossRefGoogle Scholar
  10. Giermasz AS, Urban JA, Nakamura Y, Watchmaker P, Cumberland RL, Gooding W, Kalinski P. Type-1 polarized dendritic cells primed for high IL-12 production show enhanced activity as cancer vaccines. Cancer Immunol. Immunother. 2009;58(8):1329–36.PubMedCrossRefGoogle Scholar
  11. Gilboa E. DC-based cancer vaccines. J. Clin. Invest. 2007;117(5):1195–203.PubMedCrossRefGoogle Scholar
  12. Gratama JW, van Esser JW, Lamers CH, Tournay C, Lowenberg B, Bolhuis RL, Cornelissen JJ. Tetramer-based quantification of cytomegalovirus (CMV)-specific CD8+ T lymphocytes in T-cell-depleted stem cell grafts and after transplantation may identify patients at risk for progressive CMV infection. Blood 2001;98(5):1358–64.PubMedCrossRefGoogle Scholar
  13. Hebart H, Daginik S, Stevanovic S, Grigoleit U, Dobler A, Baur M, Rauser G, Sinzger C, Jahn G, Loeffler J, et al. Sensitive detection of human cytomegalovirus peptide-specific cytotoxic T-lymphocyte responses by interferon-gamma-enzyme-linked immunospot assay and flow cytometry in healthy individuals and in patients after allogeneic stem cell transplantation. Blood 2002;99(10):3830–7.PubMedCrossRefGoogle Scholar
  14. Heslop HE, Slobod KS, Pule MA, Hale GA, Rousseau A, Smith CA, Bollard CM, Liu H, Wu MF, Rochester RJ, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 2010;115(5):925–35.PubMedCrossRefGoogle Scholar
  15. Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, Engleman EG, Levy R. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med. 1996;2(1):52–8.PubMedCrossRefGoogle Scholar
  16. Imai C, Iwamoto S, Campana D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 2005;106(1):376–83.PubMedCrossRefGoogle Scholar
  17. Jin P, Han TH, Ren J, Saunders S, Wang E, Marincola FM, Stroncek DF. Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies. J. Transl. Med. 2010;8(1):4.Google Scholar
  18. Kalinski P, Moser M. Opinion – Consensual immunity: success-driven development of T-helper-1 and T-helper-2 responses. Nat. Rev. Immunol. 2005;5(3):251–60.PubMedCrossRefGoogle Scholar
  19. Kalinski P, Urban J, Narang R, Berk E, Wieckowski E, Muthuswamy R. Dendritic cell-based therapeutic cancer vaccines: what we have and what we need. Future Oncol. 2009;5(3):379–90.PubMedCrossRefGoogle Scholar
  20. Lee JJ, Foon KA, Mailliard RB, Muthuswamy R, Kalinski P. Type 1-polarized dendritic cells loaded with autologous tumor are a potent immunogen against chronic lymphocytic leukemia. J Leukoc Biol. 2008;84(1):319–25.PubMedCrossRefGoogle Scholar
  21. Leen AM, Myers GD, Sili U, Huls MH, Weiss H, Leung KS, Carrum G, Krance RA, Chang CC, Molldrem JJ, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat. Med. 2006;12(10):1160–6.PubMedCrossRefGoogle Scholar
  22. Loren AW, Porter DL. Donor leukocyte infusions for the treatment of relapsed acute leukemia after allogeneic stem cell transplantation. Bone Marrow Transplant. 2008;41(5):483–93.PubMedCrossRefGoogle Scholar
  23. Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Celluzzi C, Falo LD, Melief CJ, Ildstad ST, Kast WM, DeLeo AB, et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat. Med. 1995;1(12):1297–302.PubMedCrossRefGoogle Scholar
  24. Messmer D, Messmer B, Chiorazzi N. The global transcriptional maturation program and stimuli-specific gene expression profiles of human myeloid dendritic cells. Int. Immunol. 2003;15(4):491–503.PubMedCrossRefGoogle Scholar
  25. Micklethwaite K, Hansen A, Foster A, Snape E, Antonenas V, Sartor M, Shaw P, Bradstock K, Gottlieb D. Ex vivo expansion and prophylactic infusion of CMV-pp65 peptide-specific cytotoxic T-lymphocytes following allogeneic hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2007;13(6):707–14.PubMedCrossRefGoogle Scholar
  26. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, DeFor TE, Burns LJ, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005;105(8):3051–7.PubMedCrossRefGoogle Scholar
  27. Moller I, Michel K, Frech N, Burger M, Pfeifer D, Frommolt P, Veelken H, Thomas-Kaskel AK. Dendritic cell maturation with poly(I:C)-based versus PGE2-based cytokine combinations results in differential functional characteristics relevant to clinical application. J. Immunother. 2008;31(5):506–19.PubMedCrossRefGoogle Scholar
  28. Muthuswamy R, Urban J, Lee JJ, Reinhart TA, Bartlett D, Kalinski P. Ability of mature dendritic cells to interact with regulatory T cells is imprinted during maturation. Cancer Res. 2008;68(14):5972–8.PubMedCrossRefGoogle Scholar
  29. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med. 1998;4(3):328–32.PubMedCrossRefGoogle Scholar
  30. Nicolette CA, Healey D, Tcherepanova I, Whelton P, Monesmith T, Coombs L, Finke LH, Whiteside T, Miesowicz F. Dendritic cells for active immunotherapy: optimizing design and manufacture in order to develop commercially and clinically viable products. Vaccine 2007;25 Suppl 2:B47–60.PubMedCrossRefGoogle Scholar
  31. Peggs KS. Adoptive T cell immunotherapy for cytomegalovirus. Expert. Opin. Biol. Ther. 2009;9(6):725–36.PubMedCrossRefGoogle Scholar
  32. Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA, Mackinnon S. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 2003;362(9393):1375–7.PubMedCrossRefGoogle Scholar
  33. Rosenberg SA, Dudley ME. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr. Opin. Immunol. 2009;21(2):233–40.PubMedCrossRefGoogle Scholar
  34. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007; 449(7161):419–26.PubMedCrossRefGoogle Scholar
  35. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, Sleath PR, Grabstein KH, Hosken NA, Kern F, et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J. Exp. Med. 2005;202(5):673–85.PubMedCrossRefGoogle Scholar
  36. Tomblyn M, Lazarus HM. Donor lymphocyte infusions: the long and winding road: how should it be traveled? Bone Marrow Transplant. 2008;42(9):569–79.PubMedCrossRefGoogle Scholar
  37. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, Riddell SR. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N. Engl. J. Med. 1995;333(16):1038–44.PubMedCrossRefGoogle Scholar
  38. Wong EC, Maher VE, Hines K, Lee J, Carter CS, Goletz T, Kopp W, Mackall CL, Berzofsky J, Read EJ. Development of a clinical-scale method for generation of dendritic cells from PBMC for use in cancer immunotherapy. Cytotherapy 2001;3(1):19–29.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Luciano Castiello
  • Marianna Sabatino
  • Ping Jin
  • Francesco M. Marincola
  • David Stroncek
    • 1
  1. 1.Department of Transfusion Medicine, Clinical CenterNational Institutes of HealthBethesdaUSA

Personalised recommendations