Transcriptional Profiling of Melanoma as a Potential Predictive Biomarker for Response to Immunotherapy

  • Thomas F. Gajewski


That melanoma is a tumor type that can respond to immunotherapies has been well documented. However, it has been equally clear that only a subset of patients is responsive to such immune-based interventions. The response rate to high-dose interleukin-2 (IL-2) is around 15% with around 5% of patients achieving a durable complete response (Atkins et al. 1999). While it might be considered that the majority of patients with melanoma simply have tumors that are generally resistant to all forms of therapy, this is probably not the case, as it has been shown that there is not cross-resistance to IL-2 and treatment with chemotherapy (Richards et al. 1992). This simple observation suggests that there might be subsets of melanomas having biologic characteristics that make them responsive to certain modes of therapy; specifically, there may be a molecular subtype of melanoma that is more amenable to treatment with immunotherapeutic approaches. This notion has begun to be investigated, beginning with gene expression profiling of tumors from individual patients undergoing treatment with experimental melanoma vaccines. Similar studies have been initiated in patients treated with IL-2 and with those receiving anti-CTLA-4 monoclonal antibodies (mAbs).


Tumor Microenvironment Melanoma Cell Line Melanoma Metastasis Melanoma Vaccine Durable Complete Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Appay, V., Jandus, C., Voelter, V., Reynard, S., Coupland, S. E., Rimoldi, D., Lienard, D., Guillaume, P., Krieg, A. M., Cerottini, J. C., et al. (2006). New generation vaccine induces effective melanoma-specific CD8+ T cells in the circulation but not in the tumor site. J Immunol 177, 1670–1678.PubMedGoogle Scholar
  2. Atkins, M. B., Lotze, M. T., Dutcher, J. P., Fisher, R. I., Weiss, G., Margolin, K., Abrams, J., Sznol, M., Parkinson, D., Hawkins, M., et al. (1999). High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17, 2105–2116.PubMedGoogle Scholar
  3. Banchereau, J., Palucka, A. K., Dhodapkar, M., Burkeholder, S., Taquet, N., Rolland, A., Taquet, S., Coquery, S., Wittkowski, K. M., Bhardwaj, N., et al. (2001). Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 61, 6451–6458.PubMedGoogle Scholar
  4. Baumgaertner, P., Rufer, N., Devevre, E., Derre, L., Rimoldi, D., Geldhof, C., Voelter, V., Lienard, D., Romero, P., and Speiser, D. E. (2006). Ex vivo detectable human CD8 T-cell responses to cancer-testis antigens. Cancer Res 66, 1912–1916.PubMedCrossRefGoogle Scholar
  5. Blank, C., Brown, I., Peterson, A. C., Spiotto, M., Iwai, Y., Honjo, T., and Gajewski, T. F. (2004). PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 64, 1140–1145.PubMedCrossRefGoogle Scholar
  6. Brown, I. E., Blank, C., Kline, J., Kacha, A. K., and Gajewski, T. F. (2006). Homeostatic proliferation as an isolated variable reverses CD8+ T cell anergy and promotes tumor rejection. J Immunol 177, 4521–4529.PubMedGoogle Scholar
  7. Cormier, J. N., Salgaller, M. L., Prevette, T., Barracchini, K. C., Rivoltini, L., Restifo, N. P., Rosenberg, S. A., and Marincola, F. M. (1997). Enhancement of cellular immunity in melanoma patients immunized with a peptide from MART-1/Melan A [see comments]. Cancer J Sci Am 3, 37–44.PubMedGoogle Scholar
  8. Dong, H., and Chen, L. (2003). B7-H1 pathway and its role in the evasion of tumor immunity. J Mol Med 81, 281–287.PubMedGoogle Scholar
  9. Gajewski, T. F. (2007). Failure at the effector phase: immune barriers at the level of the melanoma tumor microenvironment. Clin Cancer Res 13, 5256–5261.PubMedCrossRefGoogle Scholar
  10. Gajewski, T. F., Meng, Y., Blank, C., Brown, I., Kacha, A., Kline, J., and Harlin, H. (2006). Immune resistance orchestrated by the tumor microenvironment. Immunol Rev 213, 131–145.PubMedCrossRefGoogle Scholar
  11. Gajewski, T. F., Zha, Y., Thurner, B., and Schuler, G. (2009). Association of gene expression profile in melanoma and survival to a dendritic cell-based vaccine. J Clin Oncol 27, 9002.Google Scholar
  12. Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pages, C., Tosolini, M., Camus, M., Berger, A., Wind, P., et al. (2006). Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964.PubMedCrossRefGoogle Scholar
  13. Guilloux, Y., Lucas, S., Brichard, V. G., Van Pel, A., Viret, C., De Plaen, E., Brasseur, F., Lethe, B., Jotereau, F., and Boon, T. (1996). A peptide recognized by human cytolytic T lymphocytes on HLA-A2 melanomas is encoded by an intron sequence of the N-acetylglucosaminyltransferase V gene. J Exp Med 183, 1173–1183.PubMedCrossRefGoogle Scholar
  14. Hamid, O., Chasalow, S. D., Tsuchihashi, Z., Alaparthy, S., Galbraith, S., and Berman, D. (2009). Association of baseline and on-study tumor biopsy markers with clinical activity in patients with advanced melanoma treated with ipilimumab. J Clin Oncol 27, Abstract 9008.Google Scholar
  15. Harlin, H., Kuna, T. V., Peterson, A. C., Meng, Y., and Gajewski, T. F. (2006). Tumor progression despite massive influx of activated CD8(+) T cells in a patient with malignant melanoma ascites. Cancer Immunol Immunother 55, 1185–1197.PubMedCrossRefGoogle Scholar
  16. Harlin, H., Meng, Y., Peterson, A. C., Zha, Y., Tretiakova, M., Slingluff, C., McKee, M., and Gajewski, T. F. (2009). Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res 69, 3077–3085.PubMedCrossRefGoogle Scholar
  17. Hildner, K., Edelson, B. T., Purtha, W. E., Diamond, M., Matsushita, H., Kohyama, M., Calderon, B., Schraml, B. U., Unanue, E. R., Diamond, M. S., et al. (2008). Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100.PubMedCrossRefGoogle Scholar
  18. Jager, E., Chen, Y. T., Drijfhout, J. W., Karbach, J., Ringhoffer, M., Jager, D., Arand, M., Wada, H., Noguchi, Y., Stockert, E., et al. (1998). Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes. J Exp Med 187, 265–270.PubMedCrossRefGoogle Scholar
  19. Jiang, X., Zhou, J., Yuen, N. K., Corless, C. L., Heinrich, M. C., Fletcher, J. A., Demetri, G. D., Widlund, H. R., Fisher, D. E., and Hodi, F. S. (2008). Imatinib targeting of KIT-mutant oncoprotein in melanoma. Clin Cancer Res 14, 7726–7732.PubMedCrossRefGoogle Scholar
  20. Kline, J., Brown, I. E., Zha, Y. Y., Blank, C., Strickler, J., Wouters, H., Zhang, L., and Gajewski, T. F. (2008). Homeostatic proliferation plus regulatory T-cell depletion promotes potent rejection of B16 melanoma. Clin Cancer Res 14, 3156–3167.PubMedCrossRefGoogle Scholar
  21. Louahed, J., Gruselle, O., Gaulis, S., Coche, T., Eggermont, A. M., Kruit, W., Dreno, B., Charion Sileni, V., Lehmann, F., and Brichard, V. G. (2008). Expression of defined genes identified by pre-treatment tumor profiling: association with clinical responses to the GSK MAGE-A3 immunotherapeutic in metastatic melanoma patients. J Clin Oncol 26, Abstract 9045.Google Scholar
  22. Mellor, A. L., Sivakumar, J., Chandler, P., Smith, K., Molina, H., Mao, D., and Munn, D. H. (2001). Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy. Nat Immunol 2, 64–68.PubMedCrossRefGoogle Scholar
  23. Mortarini, R., Piris, A., Maurichi, A., Molla, A., Bersani, I., Bono, A., Bartoli, C., Santinami, M., Lombardo, C., Ravagnani, F., et al. (2003). Lack of terminally differentiated tumor-specific CD8+ T cells at tumor site in spite of antitumor immunity to self-antigens in human metastatic melanoma. Cancer Res 63, 2535–2545.PubMedGoogle Scholar
  24. Nomura, T., and Sakaguchi, S. (2005). Naturally arising CD25+CD4+ regulatory T cells in tumor immunity. Curr Top Microbiol Immunol 293, 287–302.PubMedCrossRefGoogle Scholar
  25. Peterson, A. C., Harlin, H., and Gajewski, T. F. (2003). Immunization with Melan-A peptide-pulsed peripheral blood mononuclear cells plus recombinant human interleukin-12 induces clinical activity and T-cell responses in advanced melanoma. J Clin Oncol 21, 2342–2348.PubMedCrossRefGoogle Scholar
  26. Restifo, N. P., and Rosenberg, S. A. (1999). Developing recombinant and synthetic vaccines for the treatment of melanoma. Curr Opin Oncol 11, 50–57.PubMedCrossRefGoogle Scholar
  27. Richards, J. M., Gilewski, T. A., Ramming, K., Mitchel, B., Doane, L. L., and Vogelzang, N. J. (1992). Effective chemotherapy for melanoma after treatment with interleukin-2. Cancer 69, 427–429.PubMedCrossRefGoogle Scholar
  28. Rosenberg, S. A., Zhai, Y., Yang, J. C., Schwartzentruber, D. J., Hwu, P., Marincola, F. M., Topalian, S. L., Restifo, N. P., Seipp, C. A., Einhorn, J. H., et al. (1998). Immunizing patients with metastatic melanoma using recombinant adenoviruses encoding MART-1 or gp100 melanoma antigens. J Natl Cancer Inst 90, 1894–1900.PubMedGoogle Scholar
  29. Schwartz, R. H. (1997). T cell clonal anergy. Curr Opin Immunol 9, 351–357.PubMedCrossRefGoogle Scholar
  30. Smalley, K. S., and Flaherty, K. T. (2009). Development of a novel chemical class of BRAF inhibitors offers new hope for melanoma treatment. Future Oncol 5, 775–778.PubMedCrossRefGoogle Scholar
  31. Sullivan, R. J., Hoshida, Y., Brunet, J., Tahan, S., Aldridge, J., Kwabi, C., Gardiner, E., McDermot, D., Golub, T., and Atkins, M. A. (2009). A single center experience with high-dose IL-2 treatment for patients with advanced melanoma and pilot investigation of a novel gene expression signature as a predictor of response. J Clin Oncol 27, Abstract 9003.Google Scholar
  32. Uyttenhove, C., Pilotte, L., Theate, I., Stroobant, V., Colau, D., Parmentier, N., Boon, T., and Van Den Eynde, B. J. (2003). Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9, 1269–1274.PubMedCrossRefGoogle Scholar
  33. van der Bruggen, P., Bastin, J., Gajewski, T., Coulie, P. G., Boel, P., De Smet, C., Traversari, C., Townsend, A., and Boon, T. (1994). A peptide encoded by human gene MAGE-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3. Eur J Immunol 24, 3038–3043.PubMedCrossRefGoogle Scholar
  34. Zhang, L., Conejo-Garcia, J. R., Katsaros, D., Gimotty, P. A., Massobrio, M., Regnani, G., Makrigiannakis, A., Gray, H., Schlienger, K., Liebman, M. N., et al. (2003). Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348, 203–213.PubMedCrossRefGoogle Scholar
  35. Zhang, L., Gajewski, T. F., and Kline, J. (2009). PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. Blood 114, 1545–1552.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Pathology and Department of Medicine, Section of Hematology/OncologyUniversity of ChicagoChicagoUSA

Personalised recommendations