Skip to main content

A Systems Biology View of Adaptation in Sensory Mechanisms

  • Conference paper
  • First Online:
Advances in Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 736))

  • 2875 Accesses

Abstract

Adaptation, the desensitization to persistent changes in environmental conditions, is present throughout biological sensory mechanisms. Not surprisingly, it has been an active area of research to systems biologists. Here, we consider some of the models proposed to account for adaptation as well as the experiments used to motivate and validate these models. We discuss some salient features of these models including robustness, deadaptation, transient responses, and the response of these systems to more complex temporal stimuli. While most of these models have been used to study chemoattractant-induced responses in bacteria and amoebae, the system-theoretic issues associated with these systems are of importance in a broad spectrum of biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hood DC (1998) Lower-level visual processing and models of light adaptation. Ann Rev Psychol 49:503–535

    Article  CAS  Google Scholar 

  2. Vladimirov N, Sourjik V (2009) Chemotaxis: how bacteria use memory. Biol Chem 390:1097–1104

    Article  CAS  PubMed  Google Scholar 

  3. Roberts MA, Papachristodoulou A, Armitage JP (2010) Adaptation and control circuits in bacterial chemotaxis. Biochem Soc Trans 38:1265–1269

    Article  CAS  PubMed  Google Scholar 

  4. Swaney KF, Huang CH, Devreotes PN (2010) Eukaryotic chemotaxis: a network of signaling pathways controls motility, directional sensing, and polarity. Ann Rev Biophys 39:265–289

    Article  CAS  Google Scholar 

  5. Wang Y, Chen CL, Iijima M (2011) Signaling mechanisms for chemotaxis. Dev Growth Differ 53:495–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Andrews BW, Yi TM, Iglesias PA (2006) Optimal noise filtering in the chemotactic response of Escherichia coli. PLoS Comput Biol 2:e154

    Google Scholar 

  7. Tu Y, Shimizu TS, Berg HC (2008) Modeling the chemotactic response of Escherichia coli to time-varying stimuli. Proc Natl Acad Sci USA 105:14855–14860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shimizu TS, Tu Y, Berg HC (2010) A modular gradient-sensing network for chemotaxis in Escherichia coli revealed by responses to time-varying stimuli. Mol Syst Biol 6:382

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ma W, Trusina A, El-Samad H, Lim WA, Tang C (2009) Defining network topologies that can achieve biochemical adaptation. Cell 138:760–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Segel LA, Goldbeter A, Devreotes PN, Knox BE (1986) A mechanism for exact sensory adaptation based on receptor modification. J Theor Biol 120:151–179

    Article  CAS  PubMed  Google Scholar 

  11. Knox BE, Devreotes PN, Goldbeter A, Segel LA (1986) A molecular mechanism for sensory adaptation based on ligand-induced receptor modification. Proc Natl Acad Sci USA 83:2345–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Francis BA (1980) On robustness of the stability of feedback systems. IEEE Trans Autom Control 25(4):817–818

    Article  Google Scholar 

  13. Csete ME, Doyle JC (2002) Reverse engineering of biological complexity. Science 295:1664–1669

    Article  CAS  PubMed  Google Scholar 

  14. Spiro PA, Parkinson JS, Othmer HG (1997) A model of excitation and adaptation in bacterial chemotaxis. Proc Natl Acad Sci USA 94:7263–7268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yi TM, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci USA 97:4649–4653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387:913–917

    Article  CAS  PubMed  Google Scholar 

  17. Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397:168–171

    Article  CAS  PubMed  Google Scholar 

  18. Francis BA, Wonham WM (1975) The internal model principle for linear multivariable regulators. Appl Math Optim 2(2):170–194

    Article  Google Scholar 

  19. Sontag ED (2003) Adaptation and regulation with signal detection implies internal model. Syst Control Lett 50(2):119–126

    Article  Google Scholar 

  20. Andrews BW, Sontag ED, Iglesias PA (2006) Signal detection and approximate adaptation implies an approximate internal model. In: Proc 45th IEEE conference on decision and control, art. no. 4177419, pp 2364–2369

    Google Scholar 

  21. Andrews BW, Sontag ED, Iglesias PA (2008) An approximate internal model principle: applications to nonlinear models of biological systems. In: Proc 17th IFAC world congress 17, DOI:10.3182/20080706-5-KR-1001.0568

    Google Scholar 

  22. Koshland DE (1977) A response regulator model in a simple sensory system. Science 196:1055–1063

    Article  CAS  PubMed  Google Scholar 

  23. Levchenko A, Iglesias PA (2002) Models of eukaryotic gradient sensing: application to chemotaxis of amoebae and neutrophils. Biophys J 82:50–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma’ayan A, Jenkins AL, Neves S, Hasseldine A, Grace E, Dubin-Thaler B, Eungdamrong EJ, Weng G, Ram PT, Rice JJ, Kershenbaum A, Stolovitzky GA, Blitzer RD, Iyengar R (2005) Formation of regulatory patterns during signal propagation in a Mammalian cellular network. Science 309:1078–1083

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mangan S, Itzkovitz S, Zaslaver A, Alon U (2006) The incoherent feed-forward loop accelerates the response-time of the gal system of Escherichia coli. J Mol Biol 356:1073–1081

    Article  CAS  PubMed  Google Scholar 

  26. Cournac A, Sepulchre JA (2009) Simple molecular networks that respond optimally to time-periodic stimulation. BMC Syst Biol 3:29

    Article  PubMed  PubMed Central  Google Scholar 

  27. Goentoro L, Shoval O, Kirschner MW, Alon U (2009) The incoherent feedforward loop can provide fold-change detection in gene regulation. Mol Cell 36:894–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. MacGillavry HD, Stam FJ, Sassen MM, Kegel L, Hendriks WT, Verhaagen J, Smit AB, van Kesteren RE (2009) NFIL3 and cAMP response element-binding protein form a transcriptional feedforward loop that controls neuronal regeneration-associated gene expression. J Neurosci 29:15542–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Osella M, Bosia C, Cora D, Caselle M (2011) The role of incoherent microRNA-mediated feedforward loops in noise buffering. PLoS Comput Biol 7:e1001101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles, and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221–231

    Article  CAS  PubMed  Google Scholar 

  31. Yang L, Iglesias PA (2006) Positive feedback may cause the biphasic response observed in the chemoattractant-induced response of Dictyostelium cells. Syst Control Lett 55:329–337

    Article  PubMed  PubMed Central  Google Scholar 

  32. Krishnan J, Iglesias PA (2003) Analysis of the signal transduction properties of a module of spatial sensing in eukaryotic chemotaxis. Bull Math Biol 65:95–128

    Article  CAS  PubMed  Google Scholar 

  33. Sontag ED (2010) Remarks on feedforward circuits, adaptation, and pulse memory. IET Syst Biol 4:39–51

    Article  CAS  PubMed  Google Scholar 

  34. Devreotes PN, Steck TL (1979) Cyclic 3’,5’ AMP relay in Dictyostelium discoideum. II. Requirements for the initiation and termination of the response. J Cell Biol 80:300–309

    Article  CAS  PubMed  Google Scholar 

  35. Dinauer MC, Steck TL, Devreotes PN (1980) Cyclic 3’,5’-AMP relay in Dictyostelium discoideum IV. Recovery of the cAMP signaling response after adaptation to cAMP. J Cell Biol 86:545–553

    CAS  PubMed  Google Scholar 

  36. Beta B, Wyatt D, Rappel WJ, Bodenschatz E (2007) Flow photolysis for spatiotemporal stimulation of single cells. Anal Chem 79:3940–3944

    Article  CAS  PubMed  Google Scholar 

  37. Xiong Y, Huang CH, Iglesias PA, Devreotes PN (2010) Cells navigate with a local-excitation, global-inhibition-biased excitable network. Proc Natl Acad Sci USA 107:17079–17086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Block SM, Segall JE, Berg HC (1983) Adaptation kinetics in bacterial chemotaxis. J Bacteriol 154:312–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krishnan J (2011) Effects of saturation and enzyme limitation in feedforward adaptive signal transduction. IET Syst Biol 5:208

    Article  CAS  PubMed  Google Scholar 

  40. Mettetal JT, Muzzey D, Gomez-Uribe C, van Oudenaarden A (2008) The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae. Science 319:482–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ferrell JE (2009) Signaling motifs and Weber’s law. Mol Cell 36:724–727

    Article  CAS  PubMed  Google Scholar 

  42. Shoval O, Goentoro L, Hart Y, Mayo A, Sontag E, Alon U (2010) Fold-change detection and scalar symmetry of sensory input fields. Proc Natl Acad Sci USA 107:15995–16000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo A. Iglesias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Iglesias, P.A. (2012). A Systems Biology View of Adaptation in Sensory Mechanisms. In: Goryanin, I.I., Goryachev, A.B. (eds) Advances in Systems Biology. Advances in Experimental Medicine and Biology, vol 736. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7210-1_29

Download citation

Publish with us

Policies and ethics