Skip to main content

Identification of Sensitive Enzymes in the Photosynthetic Carbon Metabolism

  • Conference paper
  • First Online:
  • 2779 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 736))

Abstract

Understanding and optimizing the CO2 fixation process would allow human beings to address better current energy and biotechnology issues. We focused on modeling the C3 photosynthetic Carbon metabolism pathway with the aim of identifying the minimal set of enzymes whose biotechnological alteration could allow a functional re-engineering of the pathway. To achieve this result we merged in a single powerful pipe-line Sensitivity Analysis (SA), Single- (SO) and Multi-Objective Optimization (MO), and Robustness Analysis (RA). By using our recently developed multipurpose optimization algorithms (PAO and PMO2) here we extend our work exploring a large combinatorial solution space and most importantly, here we present an important reduction of the problem search space. From the initial number of 23 enzymes we have identified 11 enzymes whose targeting in the C3 photosynthetic Carbon metabolism would provide about 90% of the overall functional optimization. Both in terms of maximal CO2 Uptake and minimal Nitrogen consumption, these 11 sensitive enzymes are confirmed to play a key role. Finally we present a RA to confirm our findings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhu XG, de Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: A numerical simulation using an evolutionary algorithm. Plant Physiol 145:513–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stracquadanio G, Umeton R, Papini A, Liò P, Nicosia, G (2010) Analysis and optimization of C3 photosynthetic carbon metabolism. In: Rigoutsos I, Floudas CA (eds) Proc BIBE 2010, 10th IEEE Int Conf Bioinformatics and Bioengineering, May 31–June 3, 2010, Philadelphia, PA, USA, IEEE Computer Society, pp 44–51

    Google Scholar 

  3. Papini A, Nicosia G, Stracquadanio G, Lio P, Umeton R (2010) Key Enzymes for the optimization of CO2 uptake and nitrogen consumption in the C3 photosynthetic carbon metabolism. J Biotechnol 150:525–526

    Article  Google Scholar 

  4. Farquhar G, Caemmerer S, Berry J (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149(1):78–90

    Article  CAS  PubMed  Google Scholar 

  5. Wullschleger S (1993) Biochemical limitations to carbon assimilation in C3 plants: a retrospective analysis. J Exp Bot 44:907–920

    Article  CAS  Google Scholar 

  6. Wingler A, Lea P, Quick W, Leegood R (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans Royal Soc London. Ser B: Biol Sci 355(1402):1517

    Article  CAS  Google Scholar 

  7. Heber U, Bligny R, Streb P, Douce R (1996) Photorespiration is essential for the protection of the photosynthetic apparatus of C3 plants against photoinactivation under sunlight. Bot Acta 109:307–315

    Article  CAS  Google Scholar 

  8. Morris M (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33(2):161–174

    Article  Google Scholar 

  9. Saltelli A, Tarantola S, Campolongo F (2004) Sensitivity analysis in practice: a guide to assessing scientific models. John Wiley & Sons Inc.

    Google Scholar 

  10. Rosvall M, Bergstrom C (2007) An information-theoretic framework for resolving community structure in complex networks. Proc Natl Acad Sci 104(18):7327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  Google Scholar 

  12. Umeton R, Stracquadanio G, Sorathiya A, Papini A, Liò P, Nicosia G (2011) Design of robust metabolic pathways. In: Proc 48th design automation conference, DAC 2011, San Diego, CA, USA, June 5–9, 2011, ACM, pp 747–752

    Google Scholar 

  13. Stracquadanio G, Nicosia G (2011) Computational energy-based redesign of robust proteins. Comput Chem Eng 35(3):464–473

    Article  CAS  Google Scholar 

  14. Hooke R, Jeeves TA (1961) “Direct search” solution of numerical and statistical problems. J ACM 8(2):212–229

    Article  Google Scholar 

  15. Huyer W, Neumaier A (1999) Global optimization by multilevel coordinate search. J Global Optim 14(4):331–355

    Article  Google Scholar 

  16. Vaz A, Vicente L (2007) A particle swarm pattern search method for bound constrained global optimization. J Global Optim 39(2):197–219

    Article  Google Scholar 

  17. Audet C, Dennis JE (2007) Mesh adaptive direct search algorithms for constrained optimization. SIAM J Optim 17(1):188–217

    Article  Google Scholar 

  18. Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evol Comput 9(2):159–195

    Article  CAS  PubMed  Google Scholar 

  19. Jones DR, Perttunen CD, Stuckman BE (1993) Lipschitzian optimization without the Lipschitz constant. J Optim Theor Appl 79(1):157–181

    Article  Google Scholar 

  20. Lewis R, Torczon V (1999) Pattern search algorithms for bound constrained minimization. SIAM J Optim 9(4):1082–1099

    Article  Google Scholar 

  21. Gilmore P, Kelley CT (1995) An implicit filtering algorithm for optimization of functions with many local minima. SIAM J Optim 5(2):269–285

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renato Umeton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Umeton, R., Stracquadanio, G., Papini, A., Costanza, J., Liò, P., Nicosia, G. (2012). Identification of Sensitive Enzymes in the Photosynthetic Carbon Metabolism. In: Goryanin, I.I., Goryachev, A.B. (eds) Advances in Systems Biology. Advances in Experimental Medicine and Biology, vol 736. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7210-1_26

Download citation

Publish with us

Policies and ethics