Skip to main content

Zooming in on Yeast Osmoadaptation

  • Conference paper
  • First Online:
  • 2923 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 736))

Abstract

Saccharomyces cerevisiae is considered as a model organism for the investigation of cellular and molecular processes and gene regulation. Specifically, the response of S. cerevisiae to increase in osmolarity of the external medium (osmoadaptation) is a model adaptation process. The first mathematical model of volume changes in S. cerevisiae due to osmolarity has been proposed as early as 1983 by Schwartz and Diller (Cryobiology 20(5):542–552). Since then, both experimental and computational methods in biology have progressed dramatically. Especially in recent years, the study of response to hyperosmotic stress in S. cerevisiae by systems biology approaches has advanced rapidly. However, a holistic understanding of osmoadaptation combining environmental conditions, cellular preconditions, biophysical processes, molecular and biochemical network dynamics, has not yet been reached. Here, we review recent advances in the investigation of different aspects of osmoadaptation and discuss them with respect to an integrated view. This leads us to critically evaluate how to approach the goal of such an integrated view.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Google Scholar 

  • Albuquerque CP, Smolka MB, Payne SH, Bafna V, Eng J, Zhou H (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7(7):1389–1396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander MR, Tyers M, Perret M, Craig BM, Fang KS, Gustin MC (2001) Regulation of cell cycle progression by swe1p and hog1p following hypertonic stress. Mol Biol Cell 12(1):53–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beese SE, Negishi T, Levin DE (2009) Identification of positive regulators of the yeast fps1 glycerol channel. PLoS Genet 5(11):e1000738

    PubMed  PubMed Central  Google Scholar 

  • Blomberg A (2000) Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett 182(1):1–8

    CAS  PubMed  Google Scholar 

  • Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212

    CAS  PubMed  Google Scholar 

  • Bouwman J, Kiewiet J, Lindenbergh A, van Eunen K, Siderius M, Bakker BM (2011) Metabolic regulation rather than de novo enzyme synthesis dominates the osmo-adaptation of yeast. Yeast 28(1):43–53

    CAS  PubMed  Google Scholar 

  • Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (miame)-toward standards for microarray data. Nat Genet 29(4):365–371

    CAS  PubMed  Google Scholar 

  • Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC (1993) An osmosensing signal transduction pathway in yeast. Science 259(5102):1760–1763

    CAS  PubMed  Google Scholar 

  • Bruck J, Liebermeister W, Klipp E (2008) Exploring the effect of variable enzyme concentrations in a kinetic model of yeast glycolysis. Genome Inform 20:1–14

    CAS  PubMed  Google Scholar 

  • Bruggeman F, De Haan J, Hardin H, Bouwman J, Rossell S, Van Eunen K, Bakker B, Westerhoff H (2006) Time-dependent hierarchical regulation analysis: deciphering cellular adaptation. IEE Proc Syst Biol 153(5):318

    CAS  Google Scholar 

  • Clotet J, Posas F (2007) Control of cell cycle in response to osmostress: lessons from yeast. Methods Enzymol 428:63–76

    CAS  PubMed  Google Scholar 

  • Clotet J, Escoté X, Adrover MA, Yaakov G, Garí E, Aldea M, de Nadal E, Posas F (2006) Phosphorylation of hsl1 by hog1 leads to a g2 arrest essential for cell survival at high osmolarity. EMBO J 25(11):2338–2346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dinnbier U, Limpinsel E, Schmid R, Bakker EP (1988) Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of escherichia coli k-12 to elevated sodium chloride concentrations. Arch Microbiol 150(4):348–357

    CAS  PubMed  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13(4):17R–27R

    CAS  PubMed  Google Scholar 

  • Eraso P, Mazón MJ, Posas F, Portillo F (2011) Gene expression profiling of yeasts overexpressing wild type or misfolded pma1 variants reveals activation of the hog1 mapk pathway. Mol Microbiol 79(5):1339–1352

    CAS  PubMed  Google Scholar 

  • Eriksson E, Enger J, Nordlander B, Erjavec N, Ramser K, Goksör M, Hohmann S, Nyström T, Hanstorp D (2007) A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. Lab Chip 7(1):71–76

    CAS  PubMed  Google Scholar 

  • Escoté X, Zapater M, Clotet J, Posas F (2004) Hog1 mediates cell-cycle arrest in g1 phase by the dual targeting of sic1. Nat Cell Biol 6(10):997–1002

    PubMed  Google Scholar 

  • Escoté X, Miranda M, Rodríguez-Porrata B, Mas A, Cordero R, Posas F, Vendrell J (2011) The stress-activated protein kinase hog1 develops a critical role after resting state. Mol Microbiol 80(2):423–435

    PubMed  Google Scholar 

  • van Eunen K, Bouwman J, Lindenbergh A, Westerhoff HV, Bakker BM (2009) Time-dependent regulation analysis dissects shifts between metabolic and gene-expression regulation during nitrogen starvation in baker’s yeast. FEBS J 276(19):5521–5536

    PubMed  Google Scholar 

  • Ferreira C, van Voorst F, Martins A, Neves L, Oliveira R, Kielland-Brandt MC, Lucas C, Brandt A (2005) A member of the sugar transporter family, stl1p is the glycerol/h+ symporter in Saccharomyces cerevisiae. Mol Biol Cell 16(4):2068–2076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20(3):301–305

    CAS  PubMed  Google Scholar 

  • Gasch A (2007) Comparative genomics of the environmental stress response in ascomycete fungi. Yeast 24(11):961–976, DOI 10.1002/yea

    Article  CAS  PubMed  Google Scholar 

  • Gat-Viks I, Shamir R (2007) Refinement and expansion of signaling pathways: the osmotic response network in yeast. Genome Res 17(3):358–367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gennemark P, Nordlander B, Hohmann S, Wedelin D (2006) A simple mathematical model of adaptation to high osmolarity in yeast. In Silico Biol 6(3):193–214

    CAS  Google Scholar 

  • Greatrix BW, van Vuuren AHJJ (2006) Expression of the hxt13 , hxt15 and hxt17 genes in Saccharomyces cerevisiae and stabilization of the hxt1 gene transcript by sugar-induced osmotic stress. Curr Genet 49(4):205–217

    CAS  PubMed  Google Scholar 

  • Hao N, Behar M, Parnell SC, Torres MP, Borchers CH, Elston TC, Dohlman HG (2007) A systems-biology analysis of feedback inhibition in the sho1 osmotic-stress–response pathway. Curr Biol 17(8):659–667

    CAS  PubMed  Google Scholar 

  • Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains. general properties, control and effector strength. Eur J Biochem 42(1):89–95

    CAS  PubMed  Google Scholar 

  • Herrgård MJ, Swainston N, Dobson P, Dunn WB, Arga KY, Arvas M, Blüthgen N, Borger S, Costenoble R, Heinemann M, Hucka M, Le Novère N, Li P, Liebermeister W, Mo ML, Oliveira AP, Petranovic D, Pettifer S, Simeonidis E, Smallbone K, Spasić I, Weichart D, Brent R, Broomhead DS, Westerhoff HV, Kirdar B, Penttilä M, Klipp E, Palsson BO, Sauer U, Oliver SG, Mendes P, Nielsen J, Kell DB (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat biotechnol 26(10):1155–1160

    PubMed  PubMed Central  Google Scholar 

  • Hersen P, McClean MN, Mahadevan L, Ramanathan S (2008) Signal processing by the hog map kinase pathway. Proc Natl Acad Sci USA 105(20):7165–7170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66(2):300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hohmann S (2010) Unicellsys – understanding the cells functional organization. J Biotechnol 150:545

    Google Scholar 

  • Horie T, Tatebayashi K, Yamada R, Saito H (2008) Phosphorylated ssk1 prevents unphosphorylated ssk1 from activating the ssk2 mitogen-activated protein kinase kinase kinase in the yeast high-osmolarity glycerol osmoregulatory pathway. Mol Cell Biol 28(17):5172–5183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novère N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J, SBML Forum (2003) The systems biology markup language (sbml): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–531

    CAS  PubMed  Google Scholar 

  • Hynne F, Danø S, Sørensen PG (2001) Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys Chem 94(1–2):121–163

    CAS  PubMed  Google Scholar 

  • Jung S, Marelli M, Rachubinski Ra, Goodlett DR, Aitchison JD (2010) Dynamic changes in the subcellular distribution of gpd1p in response to cell stress. J Biol Chem 285(9):6739–6749

    CAS  PubMed  Google Scholar 

  • Kandror O, Bretschneider N, Kreydin E, Cavalieri D, Goldberg AL (2004) Yeast adapt to near-freezing temperatures by stre/msn2,4-dependent induction of trehalose synthesis and certain molecular chaperones. Mol Cell 13(6):771–781

    CAS  PubMed  Google Scholar 

  • Kim S, Shah K (2007) Dissecting yeast hog1 map kinase pathway using a chemical genetic approach. FEBS Lett 581(6):1209–1216

    CAS  PubMed  Google Scholar 

  • Klipp E, Nordlander B, Krüger R, Gennemark P, Hohmann S (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23(8):975–982

    CAS  PubMed  Google Scholar 

  • Krause F, Uhlendorf J, Lubitz T, Schulz M, Klipp E, Liebermeister W (2010) Annotation and merging of sbml models with semanticsbml. Bioinformatics 26(3):421–422

    CAS  PubMed  Google Scholar 

  • Kühn C, Petelenz E, Nordlander B, Schaber J, Hohmann S, Klipp E (2008) Exploring the impact of osmoadaptation on glycolysis using time-varying response-coefficients. Genome Inform 20:77–90

    PubMed  Google Scholar 

  • Kühn C, Prasad KVS, Klipp E, Gennemark P (2010) Formal representation of the high osmolarity glycerol pathway in yeast. Genome Inform 22:69–83

    PubMed  Google Scholar 

  • Laibe C, Le Novère N (2007) Miriam resources: tools to generate and resolve robust cross-references in systems biology. BMC Syst Biol 1:58

    PubMed  PubMed Central  Google Scholar 

  • Le Novère N, Finney A, Hucka M, Bhalla U, Campagne F, Collado-Vides J, Crampin E, Halstead M, Klipp E, Mendes P, et al (2005) Minimum information requested in the annotation of biochemical models (miriam). Nat Biotechnol 23(12):1509–1515

    PubMed  Google Scholar 

  • Le Novère N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H, Schilstra M, Shapiro B, Snoep JL, Hucka M (2006) Biomodels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 34(Database issue):D689–D691

    Google Scholar 

  • Luyten K, Albertyn J, Skibbe WF, Prior BA, Ramos J, Thevelein JM, Hohmann S (1995) Fps1, a yeast member of the mip family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14(7):1360–1371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macia J, Regot S, Peeters T, Conde N, Solé R, Posas F (2009) Dynamic signaling in the hog1 mapk pathway relies on high basal signal transduction. Sci Signal 2(63):ra13

    PubMed  Google Scholar 

  • McClean MN, Mody A, Broach JR, Ramanathan S (2007) Cross-talk and decision making in map kinase pathways. Nat Genet 39(3):409–414

    CAS  PubMed  Google Scholar 

  • Mettetal JT, Muzzey D, Gómez-Uribe C, van Oudenaarden A (2008) The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae. Science 319(5862): 482–484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Modig T, Granath K, Adler L, Lidn G (2007) Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress. Appl Microbiol Biotechnol 75(2): 289–296

    CAS  PubMed  Google Scholar 

  • Mollapour M, Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27(18):6446–6456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mollapour M, Shepherd A, Piper PW (2009) Presence of the fps1p aquaglyceroporin channel is essential for hog1p activation, but suppresses slt2(mpk1)p activation, with acetic acid stress of yeast. Microbiology 155(Pt 10):3304–3311

    CAS  PubMed  Google Scholar 

  • Murakami Y, Tatebayashi K, Saito H (2008) Two adjacent docking sites in the yeast hog1 mitogen-activated protein (map) kinase differentially interact with the pbs2 map kinase kinase and the ptp2 protein tyrosine phosphatase. Mol Cell Biol 28(7):2481–2494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muzzey D, Gómez-Uribe Ca, Mettetal JT, van Oudenaarden A (2009) A systems-level analysis of perfect adaptation in yeast osmoregulation. Cell 138(1):160–171

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Nadal E, Posas F (2010) Multilayered control of gene expression by stress-activated protein kinases. EMBO J 29(1):4–13

    PubMed  Google Scholar 

  • Nevoigt E, Stahl U (1997) Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 21(3):231–241

    CAS  PubMed  Google Scholar 

  • Nordlander B, Krantz M, Hohmann S (2008) Hog1-mediated metabolic adjustments following hyperosmotic shock in the yeast Saccharomyces cerevisiae. In: Posas F, Nebreda A (eds) Stress-activated protein kinases, Top Curr Genet, vol 20, Springer Berlin/Heidelberg, pp. 141–158

    Google Scholar 

  • Olivier BG, Snoep JL (2004) Web-based kinetic modelling using jws online. Bioinformatics 20(13):2143–2144

    CAS  PubMed  Google Scholar 

  • Olz R, Larsson K, Adler L, Gustafsson L (1993) Energy flux and osmoregulation of Saccharomyces cerevisiae grown in chemostats under nacl stress. J Bacteriol 175(8): 2205–2213

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Rourke SM, Herskowitz I (1998) The hog1 mapk prevents cross talk between the hog and pheromone response mapk pathways in Saccharomyces cerevisiae. Genes Dev 12(18): 2874–2886

    PubMed  PubMed Central  Google Scholar 

  • Ou X, Ji C, Han X, Zhao X, Li X, Mao Y, Wong LL, Bartlam M, Rao Z (2006) Crystal structures of human glycerol 3-phosphate dehydrogenase 1 (gpd1). J Mol Biol 357(3): 858–869

    CAS  PubMed  Google Scholar 

  • Parmar JH, Bhartiya S, Venkatesh KV (2011) Characterization of the adaptive response and growth upon hyperosmotic shock in Saccharomyces cerevisiae. Mol BioSyst 7(4):1138–1148

    CAS  PubMed  Google Scholar 

  • Parrou JL, Teste MA, François J (1997) Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 143(6):1891–1900

    CAS  PubMed  Google Scholar 

  • Rensing L, Ruoff P (2009) How can yeast cells decide between three activated map kinase pathways? A model approach. J Theor Biol 257(4):578–587

    CAS  PubMed  Google Scholar 

  • Rep M, Albertyn J, Thevelein JM, Prior Ba, Hohmann S (1999) Different signalling pathways contribute to the control of gpd1 gene expression by osmotic stress in Saccharomyces cerevisiae. Microbiology 145 (Pt 3):715–727

    Google Scholar 

  • Rizzi M, Baltes M, Theobald U, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: Ii. mathematical model. Biotechnol Bioeng 55(4):592–608

    CAS  PubMed  Google Scholar 

  • Schaber J, Adrover MA, Eriksson E, Pelet S, Petelenz-Kurdziel E, Klein D, Posas F, Goksör M, Peter M, Hohmann S, Klipp E (2010) Biophysical properties of Saccharomyces cerevisiae and their relationship with hog pathway activation. Eur Biophys J 39(11):1547–1556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shabala SN, Lew RR (2002) Turgor regulation in osmotically stressed arabidopsis epidermal root cells. direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol 129(1):290–299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shackel KA, Brinckmann E (1985) In situ measurement of epidermal cell turgor, leaf water potential, and gas exchange in Tradescantia virginiana l. Plant Physiol 78(1):66–70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singer MA, Lindquist S (1998) Thermotolerance in Saccharomyces cerevisiae: The yin and yang of trehalose. Trends Biotechnol 16(11):460–468

    CAS  PubMed  Google Scholar 

  • Singh K, Norton R (1991) Metabolic changes induced during adaptation of Saccharomyces cerevisiae to a water stress. Arch Microbiol 156(1):38–42

    CAS  PubMed  Google Scholar 

  • Tamás MJ, Luyten K, Sutherland FC, Hernandez a, Albertyn J, Valadi H, Li H, Prior Ba, Kilian SG, Ramos J, Gustafsson L, Thevelein JM, Hohmann S (1999) Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31(4):1087–1104

    Google Scholar 

  • Tamás MJ, Rep M, Thevelein JM, Hohmann S (2000) Stimulation of the yeast high osmolarity glycerol (hog) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Lett 472(1):159–165

    PubMed  Google Scholar 

  • Tatebayashi K, Takekawa M, Saito H (2003) A docking site determining specificity of pbs2 mapkk for ssk2/ssk22 mapkkks in the yeast hog pathway. EMBO J 22(14):3624–3634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tatebayashi K, Yamamoto K, Tanaka K, Tomida T, Maruoka T, Kasukawa E, Saito H (2006) Adaptor functions of cdc42, ste50, and sho1 in the yeast osmoregulatory hog mapk pathway. EMBO J 25(13):3033–3044

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tatebayashi K, Tanaka K, Yang HY, Yamamoto K, Matsushita Y, Tomida T, Imai M, Saito H (2007) Transmembrane mucins hkr1 and msb2 are putative osmosensors in the sho1 branch of yeast hog pathway. EMBO J 26(15):3521–3533

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor CF, Paton NW, Lilley KS, Binz PA, Julian RK, Jones AR, Zhu W, Apweiler R, Aebersold R, Deutsch EW, Dunn MJ, Heck AJR, Leitner A, Macht M, Mann M, Martens L, Neubert TA, Patterson SD, Ping P, Seymour SL, Souda P, Tsugita A, Vandekerckhove J, Vondriska TM, Whitelegge JP, Wilkins MR, Xenarios I, Yates JR, Hermjakob H (2007) The minimum information about a proteomics experiment (miape). Nat Biotechnol 25(8): 887–893

    CAS  PubMed  Google Scholar 

  • Taylor CF, Field D, Sansone SA, Aerts J, Apweiler R, Ashburner M, Ball CA, Binz PA, Bogue M, Booth T, Brazma A, Brinkman RR, Clark AM, Deutsch EW, Fiehn O, Fostel J, Ghazal P, Gibson F, Gray T, Grimes G, Hancock JM, Hardy NW, Hermjakob H, Julian RK, Kane M, Kettner C, Kinsinger C, Kolker E, Kuiper M, Le Novère N, Leebens-Mack J, Lewis SE, Lord P, Mallon AM, Marthandan N, Masuya H, McNally R, Mehrle A, Morrison N, Orchard S, Quackenbush J, Reecy JM, Robertson DG, Rocca-Serra P, Rodriguez H, Rosenfelder H, Santoyo-Lopez J, Scheuermann RH, Schober D, Smith B, Snape J, Stoeckert CJ, Tipton K, Sterk P, Untergasser A, Vandesompele J, Wiemann S (2008) Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the mibbi project. Nat Biotechnol 26(8):889–896, DOI 10.1038/nbt.1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teusink B, Walsh MC, van Dam K, Westerhoff HV (1998) The danger of metabolic pathways with turbo design. Trends Biochem Sci 23(5):162–169

    CAS  PubMed  Google Scholar 

  • Teusink B, Passarge J, Reijenga Ca, Esgalhado E, van der Weijden CC, Schepper M, Walsh MC, Bakker BM, van Dam K, Westerhoff HV, Snoep JL (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267(17):5313–5329

    CAS  PubMed  Google Scholar 

  • Thorsen M, Di Y, Tangemo C (2006) The mapk hog1p modulates fps1p-dependent arsenite uptake and tolerance in yeast. Mol Biol Cell 17(October):4400–4410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valadi A, Granath K, Gustafsson L, Adler L (2004) Distinct intracellular localization of gpd1p and gpd2p, the two yeast isoforms of nad+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production. J Biol Chem 279(38):39677–39685

    CAS  PubMed  Google Scholar 

  • Waltemath D, Adams R, Beard DA, Bergmann FT, Bhalla US, Britten R, Chelliah V, Cooling MT, Cooper J, Crampin EJ, Garny A, Hoops S, Hucka M, Hunter P, Klipp E, Laibe C, Miller AK, Moraru I, Nickerson D, Nielsen P, Nikolski M, Sahle S, Sauro HM, Schmidt H, Snoep JL, Tolle D, Wolkenhauer O, Le Novère N (2011) Minimum information about a simulation experiment (miase). PLoS Comput Biol 7(4):e1001122+

    Google Scholar 

  • Waltermann C, Klipp E (2010) Signal integration in budding yeast. Biochem Soc Trans 38(5):1257–1264

    CAS  PubMed  Google Scholar 

  • Warringer J, Hult M, Regot S, Posas F, Sunnerhagen P (2010) The hog pathway dictates the short-term translational response after hyperosmotic shock. Mol Biol Cell 21(17):3080– 3092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Westfall PJ, Thorner J (2006) Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress: use of an analog-sensitive hog1 allele. Eukaryotic Cell 5(8):1215–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Westfall PJ, Patterson JC, Chen RE, Thorner J (2008) Stress resistance and signal fidelity independent of nuclear mapk function. Proc Natl Acad Sci USA 105(34):12212–12217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie van Leeuwenhoek 58(3):209–217

    CAS  PubMed  Google Scholar 

  • Wysocki R, Chéry CC, Wawrzycka D, Hulle MV, Cornelis R, Thevelein JM, Tamás MJ (2001) The glycerol channel fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol 40(6):1391–1401

    CAS  PubMed  Google Scholar 

  • Yaakov G, Bell M, Hohmann S, Engelberg D (2003) Combination of two activating mutations in one hog1 gene forms hyperactive enzymes that induce growth arrest. Mol Cell Biol 23(14):4826–4840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yaakov G, Duch A, Garca-Rubio M, Clotet J, Jimenez J, Aguilera A, Posas F (2009) The stress-activated protein kinase hog1 mediates s phase delay in response to osmostress. Mol Biol Cell 20(15):3572–3582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto K, Tatebayashi K, Tanaka K, Saito H (2010) Dynamic control of yeast map kinase network by induced association and dissociation between the ste50 scaffold and the opy2 membrane anchor. Mol Cell 40(1):87–98

    CAS  PubMed  Google Scholar 

  • Yang HY, Tatebayashi K, Yamamoto K, Saito H (2009) Glycosylation defects activate filamentous growth kss1 mapk and inhibit osmoregulatory hog1 mapk. EMBO J 28(10):1380–1391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zähringer H, Thevelein JM, Nwaka S (2000) Induction of neutral trehalase nth1 by heat and osmotic stress is controlled by stre elements and msn2/msn4 transcription factors: variations of pka effect during stress and growth. Mol Microbiol 35(2):397–406

    PubMed  Google Scholar 

  • Zapater M, Clotet J, Escoté X, Posas F (2005) Control of cell cycle progression by the stress-activated hog1 mapk. Cell Cycle 4(1):6–7

    CAS  PubMed  Google Scholar 

  • Zi Z, Liebermeister W, Klipp E (2010) A quantitative study of the hog1 MAPK response to fluctuating osmotic stress in Saccharomyces cerevisiae. PLoS One 5(3):e9522

    PubMed  PubMed Central  Google Scholar 

  • Zou X, Peng T, Pan Z (2008) Modeling specificity in the yeast mapk signaling networks. J Theor Biol 250(1):139–155

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

EK is supported by UNICELLSYS (European Commission 7th Framework Programme: Contract No. 201142)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edda Klipp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Kühn, C., Klipp, E. (2012). Zooming in on Yeast Osmoadaptation. In: Goryanin, I.I., Goryachev, A.B. (eds) Advances in Systems Biology. Advances in Experimental Medicine and Biology, vol 736. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7210-1_17

Download citation

Publish with us

Policies and ethics