Advertisement

Zooming in on Yeast Osmoadaptation

  • Clemens Kühn
  • Edda Klipp
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 736)

Abstract

Saccharomyces cerevisiae is considered as a model organism for the investigation of cellular and molecular processes and gene regulation. Specifically, the response of S. cerevisiae to increase in osmolarity of the external medium (osmoadaptation) is a model adaptation process. The first mathematical model of volume changes in S. cerevisiae due to osmolarity has been proposed as early as 1983 by Schwartz and Diller (Cryobiology 20(5):542–552). Since then, both experimental and computational methods in biology have progressed dramatically. Especially in recent years, the study of response to hyperosmotic stress in S. cerevisiae by systems biology approaches has advanced rapidly. However, a holistic understanding of osmoadaptation combining environmental conditions, cellular preconditions, biophysical processes, molecular and biochemical network dynamics, has not yet been reached. Here, we review recent advances in the investigation of different aspects of osmoadaptation and discuss them with respect to an integrated view. This leads us to critically evaluate how to approach the goal of such an integrated view.

Keywords

Comprehensive Model Comprehensive View Turgor Pressure Hyperosmotic Stress Extracellular Osmolarity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

EK is supported by UNICELLSYS (European Commission 7th Framework Programme: Contract No. 201142)

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723CrossRefGoogle Scholar
  2. Albuquerque CP, Smolka MB, Payne SH, Bafna V, Eng J, Zhou H (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7(7):1389–1396PubMedCrossRefGoogle Scholar
  3. Alexander MR, Tyers M, Perret M, Craig BM, Fang KS, Gustin MC (2001) Regulation of cell cycle progression by swe1p and hog1p following hypertonic stress. Mol Biol Cell 12(1):53–62PubMedGoogle Scholar
  4. Beese SE, Negishi T, Levin DE (2009) Identification of positive regulators of the yeast fps1 glycerol channel. PLoS Genet 5(11):e1000738PubMedCrossRefGoogle Scholar
  5. Blomberg A (2000) Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett 182(1):1–8PubMedCrossRefGoogle Scholar
  6. Blomberg A, Adler L (1992) Physiology of osmotolerance in fungi. Adv Microb Physiol 33:145–212PubMedCrossRefGoogle Scholar
  7. Bouwman J, Kiewiet J, Lindenbergh A, van Eunen K, Siderius M, Bakker BM (2011) Metabolic regulation rather than de novo enzyme synthesis dominates the osmo-adaptation of yeast. Yeast 28(1):43–53PubMedCrossRefGoogle Scholar
  8. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (miame)-toward standards for microarray data. Nat Genet 29(4):365–371PubMedCrossRefGoogle Scholar
  9. Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC (1993) An osmosensing signal transduction pathway in yeast. Science 259(5102):1760–1763PubMedCrossRefGoogle Scholar
  10. Bruck J, Liebermeister W, Klipp E (2008) Exploring the effect of variable enzyme concentrations in a kinetic model of yeast glycolysis. Genome Inform 20:1–14PubMedCrossRefGoogle Scholar
  11. Bruggeman F, De Haan J, Hardin H, Bouwman J, Rossell S, Van Eunen K, Bakker B, Westerhoff H (2006) Time-dependent hierarchical regulation analysis: deciphering cellular adaptation. IEE Proc Syst Biol 153(5):318CrossRefGoogle Scholar
  12. Clotet J, Posas F (2007) Control of cell cycle in response to osmostress: lessons from yeast. Methods Enzymol 428:63–76PubMedCrossRefGoogle Scholar
  13. Clotet J, Escoté X, Adrover MA, Yaakov G, Garí E, Aldea M, de Nadal E, Posas F (2006) Phosphorylation of hsl1 by hog1 leads to a g2 arrest essential for cell survival at high osmolarity. EMBO J 25(11):2338–2346PubMedCrossRefGoogle Scholar
  14. Dinnbier U, Limpinsel E, Schmid R, Bakker EP (1988) Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of escherichia coli k-12 to elevated sodium chloride concentrations. Arch Microbiol 150(4):348–357PubMedCrossRefGoogle Scholar
  15. Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13(4):17R–27RPubMedCrossRefGoogle Scholar
  16. Eraso P, Mazón MJ, Posas F, Portillo F (2011) Gene expression profiling of yeasts overexpressing wild type or misfolded pma1 variants reveals activation of the hog1 mapk pathway. Mol Microbiol 79(5):1339–1352PubMedCrossRefGoogle Scholar
  17. Eriksson E, Enger J, Nordlander B, Erjavec N, Ramser K, Goksör M, Hohmann S, Nyström T, Hanstorp D (2007) A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes. Lab Chip 7(1):71–76PubMedCrossRefGoogle Scholar
  18. Escoté X, Zapater M, Clotet J, Posas F (2004) Hog1 mediates cell-cycle arrest in g1 phase by the dual targeting of sic1. Nat Cell Biol 6(10):997–1002PubMedCrossRefGoogle Scholar
  19. Escoté X, Miranda M, Rodríguez-Porrata B, Mas A, Cordero R, Posas F, Vendrell J (2011) The stress-activated protein kinase hog1 develops a critical role after resting state. Mol Microbiol 80(2):423–435PubMedCrossRefGoogle Scholar
  20. van Eunen K, Bouwman J, Lindenbergh A, Westerhoff HV, Bakker BM (2009) Time-dependent regulation analysis dissects shifts between metabolic and gene-expression regulation during nitrogen starvation in baker’s yeast. FEBS J 276(19):5521–5536PubMedCrossRefGoogle Scholar
  21. Ferreira C, van Voorst F, Martins A, Neves L, Oliveira R, Kielland-Brandt MC, Lucas C, Brandt A (2005) A member of the sugar transporter family, stl1p is the glycerol/h+ symporter in Saccharomyces cerevisiae. Mol Biol Cell 16(4):2068–2076Google Scholar
  22. Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20(3):301–305Google Scholar
  23. Gasch A (2007) Comparative genomics of the environmental stress response in ascomycete fungi. Yeast 24(11):961–976, DOI 10.1002/yeaPubMedCrossRefGoogle Scholar
  24. Gat-Viks I, Shamir R (2007) Refinement and expansion of signaling pathways: the osmotic response network in yeast. Genome Res 17(3):358–367PubMedCrossRefGoogle Scholar
  25. Gennemark P, Nordlander B, Hohmann S, Wedelin D (2006) A simple mathematical model of adaptation to high osmolarity in yeast. In Silico Biol 6(3):193–214Google Scholar
  26. Greatrix BW, van Vuuren AHJJ (2006) Expression of the hxt13 , hxt15 and hxt17 genes in Saccharomyces cerevisiae and stabilization of the hxt1 gene transcript by sugar-induced osmotic stress. Curr Genet 49(4):205–217PubMedCrossRefGoogle Scholar
  27. Hao N, Behar M, Parnell SC, Torres MP, Borchers CH, Elston TC, Dohlman HG (2007) A systems-biology analysis of feedback inhibition in the sho1 osmotic-stress–response pathway. Curr Biol 17(8):659–667PubMedCrossRefGoogle Scholar
  28. Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains. general properties, control and effector strength. Eur J Biochem 42(1):89–95Google Scholar
  29. Herrgård MJ, Swainston N, Dobson P, Dunn WB, Arga KY, Arvas M, Blüthgen N, Borger S, Costenoble R, Heinemann M, Hucka M, Le Novère N, Li P, Liebermeister W, Mo ML, Oliveira AP, Petranovic D, Pettifer S, Simeonidis E, Smallbone K, Spasić I, Weichart D, Brent R, Broomhead DS, Westerhoff HV, Kirdar B, Penttilä M, Klipp E, Palsson BO, Sauer U, Oliver SG, Mendes P, Nielsen J, Kell DB (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat biotechnol 26(10):1155–1160PubMedCrossRefGoogle Scholar
  30. Hersen P, McClean MN, Mahadevan L, Ramanathan S (2008) Signal processing by the hog map kinase pathway. Proc Natl Acad Sci USA 105(20):7165–7170PubMedCrossRefGoogle Scholar
  31. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66(2):300PubMedCrossRefGoogle Scholar
  32. Hohmann S (2010) Unicellsys – understanding the cells functional organization. J Biotechnol 150:545CrossRefGoogle Scholar
  33. Horie T, Tatebayashi K, Yamada R, Saito H (2008) Phosphorylated ssk1 prevents unphosphorylated ssk1 from activating the ssk2 mitogen-activated protein kinase kinase kinase in the yeast high-osmolarity glycerol osmoregulatory pathway. Mol Cell Biol 28(17):5172–5183PubMedCrossRefGoogle Scholar
  34. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novère N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J, SBML Forum (2003) The systems biology markup language (sbml): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–531PubMedCrossRefGoogle Scholar
  35. Hynne F, Danø S, Sørensen PG (2001) Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys Chem 94(1–2):121–163Google Scholar
  36. Jung S, Marelli M, Rachubinski Ra, Goodlett DR, Aitchison JD (2010) Dynamic changes in the subcellular distribution of gpd1p in response to cell stress. J Biol Chem 285(9):6739–6749PubMedCrossRefGoogle Scholar
  37. Kandror O, Bretschneider N, Kreydin E, Cavalieri D, Goldberg AL (2004) Yeast adapt to near-freezing temperatures by stre/msn2,4-dependent induction of trehalose synthesis and certain molecular chaperones. Mol Cell 13(6):771–781PubMedCrossRefGoogle Scholar
  38. Kim S, Shah K (2007) Dissecting yeast hog1 map kinase pathway using a chemical genetic approach. FEBS Lett 581(6):1209–1216PubMedCrossRefGoogle Scholar
  39. Klipp E, Nordlander B, Krüger R, Gennemark P, Hohmann S (2005) Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23(8):975–982PubMedCrossRefGoogle Scholar
  40. Krause F, Uhlendorf J, Lubitz T, Schulz M, Klipp E, Liebermeister W (2010) Annotation and merging of sbml models with semanticsbml. Bioinformatics 26(3):421–422PubMedCrossRefGoogle Scholar
  41. Kühn C, Petelenz E, Nordlander B, Schaber J, Hohmann S, Klipp E (2008) Exploring the impact of osmoadaptation on glycolysis using time-varying response-coefficients. Genome Inform 20:77–90PubMedCrossRefGoogle Scholar
  42. Kühn C, Prasad KVS, Klipp E, Gennemark P (2010) Formal representation of the high osmolarity glycerol pathway in yeast. Genome Inform 22:69–83PubMedCrossRefGoogle Scholar
  43. Laibe C, Le Novère N (2007) Miriam resources: tools to generate and resolve robust cross-references in systems biology. BMC Syst Biol 1:58PubMedCrossRefGoogle Scholar
  44. Le Novère N, Finney A, Hucka M, Bhalla U, Campagne F, Collado-Vides J, Crampin E, Halstead M, Klipp E, Mendes P, et al (2005) Minimum information requested in the annotation of biochemical models (miriam). Nat Biotechnol 23(12):1509–1515PubMedCrossRefGoogle Scholar
  45. Le Novère N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H, Schilstra M, Shapiro B, Snoep JL, Hucka M (2006) Biomodels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 34(Database issue):D689–D691Google Scholar
  46. Luyten K, Albertyn J, Skibbe WF, Prior BA, Ramos J, Thevelein JM, Hohmann S (1995) Fps1, a yeast member of the mip family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14(7):1360–1371PubMedGoogle Scholar
  47. Macia J, Regot S, Peeters T, Conde N, Solé R, Posas F (2009) Dynamic signaling in the hog1 mapk pathway relies on high basal signal transduction. Sci Signal 2(63):ra13Google Scholar
  48. McClean MN, Mody A, Broach JR, Ramanathan S (2007) Cross-talk and decision making in map kinase pathways. Nat Genet 39(3):409–414PubMedCrossRefGoogle Scholar
  49. Mettetal JT, Muzzey D, Gómez-Uribe C, van Oudenaarden A (2008) The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae. Science 319(5862): 482–484Google Scholar
  50. Modig T, Granath K, Adler L, Lidn G (2007) Anaerobic glycerol production by Saccharomyces cerevisiae strains under hyperosmotic stress. Appl Microbiol Biotechnol 75(2): 289–296PubMedCrossRefGoogle Scholar
  51. Mollapour M, Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27(18):6446–6456PubMedCrossRefGoogle Scholar
  52. Mollapour M, Shepherd A, Piper PW (2009) Presence of the fps1p aquaglyceroporin channel is essential for hog1p activation, but suppresses slt2(mpk1)p activation, with acetic acid stress of yeast. Microbiology 155(Pt 10):3304–3311PubMedCrossRefGoogle Scholar
  53. Murakami Y, Tatebayashi K, Saito H (2008) Two adjacent docking sites in the yeast hog1 mitogen-activated protein (map) kinase differentially interact with the pbs2 map kinase kinase and the ptp2 protein tyrosine phosphatase. Mol Cell Biol 28(7):2481–2494PubMedCrossRefGoogle Scholar
  54. Muzzey D, Gómez-Uribe Ca, Mettetal JT, van Oudenaarden A (2009) A systems-level analysis of perfect adaptation in yeast osmoregulation. Cell 138(1):160–171PubMedCrossRefGoogle Scholar
  55. de Nadal E, Posas F (2010) Multilayered control of gene expression by stress-activated protein kinases. EMBO J 29(1):4–13PubMedCrossRefGoogle Scholar
  56. Nevoigt E, Stahl U (1997) Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 21(3):231–241Google Scholar
  57. Nordlander B, Krantz M, Hohmann S (2008) Hog1-mediated metabolic adjustments following hyperosmotic shock in the yeast Saccharomyces cerevisiae. In: Posas F, Nebreda A (eds) Stress-activated protein kinases, Top Curr Genet, vol 20, Springer Berlin/Heidelberg, pp. 141–158Google Scholar
  58. Olivier BG, Snoep JL (2004) Web-based kinetic modelling using jws online. Bioinformatics 20(13):2143–2144PubMedCrossRefGoogle Scholar
  59. Olz R, Larsson K, Adler L, Gustafsson L (1993) Energy flux and osmoregulation of Saccharomyces cerevisiae grown in chemostats under nacl stress. J Bacteriol 175(8): 2205–2213PubMedGoogle Scholar
  60. O’Rourke SM, Herskowitz I (1998) The hog1 mapk prevents cross talk between the hog and pheromone response mapk pathways in Saccharomyces cerevisiae. Genes Dev 12(18): 2874–2886Google Scholar
  61. Ou X, Ji C, Han X, Zhao X, Li X, Mao Y, Wong LL, Bartlam M, Rao Z (2006) Crystal structures of human glycerol 3-phosphate dehydrogenase 1 (gpd1). J Mol Biol 357(3): 858–869PubMedCrossRefGoogle Scholar
  62. Parmar JH, Bhartiya S, Venkatesh KV (2011) Characterization of the adaptive response and growth upon hyperosmotic shock in Saccharomyces cerevisiae. Mol BioSyst 7(4):1138–1148Google Scholar
  63. Parrou JL, Teste MA, François J (1997) Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology 143(6):1891–1900PubMedCrossRefGoogle Scholar
  64. Rensing L, Ruoff P (2009) How can yeast cells decide between three activated map kinase pathways? A model approach. J Theor Biol 257(4):578–587PubMedCrossRefGoogle Scholar
  65. Rep M, Albertyn J, Thevelein JM, Prior Ba, Hohmann S (1999) Different signalling pathways contribute to the control of gpd1 gene expression by osmotic stress in Saccharomyces cerevisiae. Microbiology 145 (Pt 3):715–727Google Scholar
  66. Rizzi M, Baltes M, Theobald U, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: Ii. mathematical model. Biotechnol Bioeng 55(4):592–608Google Scholar
  67. Schaber J, Adrover MA, Eriksson E, Pelet S, Petelenz-Kurdziel E, Klein D, Posas F, Goksör M, Peter M, Hohmann S, Klipp E (2010) Biophysical properties of Saccharomyces cerevisiae and their relationship with hog pathway activation. Eur Biophys J 39(11):1547–1556PubMedCrossRefGoogle Scholar
  68. Shabala SN, Lew RR (2002) Turgor regulation in osmotically stressed arabidopsis epidermal root cells. direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol 129(1):290–299Google Scholar
  69. Shackel KA, Brinckmann E (1985) In situ measurement of epidermal cell turgor, leaf water potential, and gas exchange in Tradescantia virginiana l. Plant Physiol 78(1):66–70PubMedCrossRefGoogle Scholar
  70. Singer MA, Lindquist S (1998) Thermotolerance in Saccharomyces cerevisiae: The yin and yang of trehalose. Trends Biotechnol 16(11):460–468PubMedCrossRefGoogle Scholar
  71. Singh K, Norton R (1991) Metabolic changes induced during adaptation of Saccharomyces cerevisiae to a water stress. Arch Microbiol 156(1):38–42PubMedCrossRefGoogle Scholar
  72. Tamás MJ, Luyten K, Sutherland FC, Hernandez a, Albertyn J, Valadi H, Li H, Prior Ba, Kilian SG, Ramos J, Gustafsson L, Thevelein JM, Hohmann S (1999) Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31(4):1087–1104Google Scholar
  73. Tamás MJ, Rep M, Thevelein JM, Hohmann S (2000) Stimulation of the yeast high osmolarity glycerol (hog) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Lett 472(1):159–165PubMedCrossRefGoogle Scholar
  74. Tatebayashi K, Takekawa M, Saito H (2003) A docking site determining specificity of pbs2 mapkk for ssk2/ssk22 mapkkks in the yeast hog pathway. EMBO J 22(14):3624–3634PubMedCrossRefGoogle Scholar
  75. Tatebayashi K, Yamamoto K, Tanaka K, Tomida T, Maruoka T, Kasukawa E, Saito H (2006) Adaptor functions of cdc42, ste50, and sho1 in the yeast osmoregulatory hog mapk pathway. EMBO J 25(13):3033–3044PubMedCrossRefGoogle Scholar
  76. Tatebayashi K, Tanaka K, Yang HY, Yamamoto K, Matsushita Y, Tomida T, Imai M, Saito H (2007) Transmembrane mucins hkr1 and msb2 are putative osmosensors in the sho1 branch of yeast hog pathway. EMBO J 26(15):3521–3533PubMedCrossRefGoogle Scholar
  77. Taylor CF, Paton NW, Lilley KS, Binz PA, Julian RK, Jones AR, Zhu W, Apweiler R, Aebersold R, Deutsch EW, Dunn MJ, Heck AJR, Leitner A, Macht M, Mann M, Martens L, Neubert TA, Patterson SD, Ping P, Seymour SL, Souda P, Tsugita A, Vandekerckhove J, Vondriska TM, Whitelegge JP, Wilkins MR, Xenarios I, Yates JR, Hermjakob H (2007) The minimum information about a proteomics experiment (miape). Nat Biotechnol 25(8): 887–893PubMedCrossRefGoogle Scholar
  78. Taylor CF, Field D, Sansone SA, Aerts J, Apweiler R, Ashburner M, Ball CA, Binz PA, Bogue M, Booth T, Brazma A, Brinkman RR, Clark AM, Deutsch EW, Fiehn O, Fostel J, Ghazal P, Gibson F, Gray T, Grimes G, Hancock JM, Hardy NW, Hermjakob H, Julian RK, Kane M, Kettner C, Kinsinger C, Kolker E, Kuiper M, Le Novère N, Leebens-Mack J, Lewis SE, Lord P, Mallon AM, Marthandan N, Masuya H, McNally R, Mehrle A, Morrison N, Orchard S, Quackenbush J, Reecy JM, Robertson DG, Rocca-Serra P, Rodriguez H, Rosenfelder H, Santoyo-Lopez J, Scheuermann RH, Schober D, Smith B, Snape J, Stoeckert CJ, Tipton K, Sterk P, Untergasser A, Vandesompele J, Wiemann S (2008) Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the mibbi project. Nat Biotechnol 26(8):889–896, DOI 10.1038/nbt.1411PubMedCrossRefGoogle Scholar
  79. Teusink B, Walsh MC, van Dam K, Westerhoff HV (1998) The danger of metabolic pathways with turbo design. Trends Biochem Sci 23(5):162–169PubMedCrossRefGoogle Scholar
  80. Teusink B, Passarge J, Reijenga Ca, Esgalhado E, van der Weijden CC, Schepper M, Walsh MC, Bakker BM, van Dam K, Westerhoff HV, Snoep JL (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267(17):5313–5329PubMedCrossRefGoogle Scholar
  81. Thorsen M, Di Y, Tangemo C (2006) The mapk hog1p modulates fps1p-dependent arsenite uptake and tolerance in yeast. Mol Biol Cell 17(October):4400–4410PubMedCrossRefGoogle Scholar
  82. Valadi A, Granath K, Gustafsson L, Adler L (2004) Distinct intracellular localization of gpd1p and gpd2p, the two yeast isoforms of nad+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production. J Biol Chem 279(38):39677–39685PubMedCrossRefGoogle Scholar
  83. Waltemath D, Adams R, Beard DA, Bergmann FT, Bhalla US, Britten R, Chelliah V, Cooling MT, Cooper J, Crampin EJ, Garny A, Hoops S, Hucka M, Hunter P, Klipp E, Laibe C, Miller AK, Moraru I, Nickerson D, Nielsen P, Nikolski M, Sahle S, Sauro HM, Schmidt H, Snoep JL, Tolle D, Wolkenhauer O, Le Novère N (2011) Minimum information about a simulation experiment (miase). PLoS Comput Biol 7(4):e1001122+Google Scholar
  84. Waltermann C, Klipp E (2010) Signal integration in budding yeast. Biochem Soc Trans 38(5):1257–1264PubMedCrossRefGoogle Scholar
  85. Warringer J, Hult M, Regot S, Posas F, Sunnerhagen P (2010) The hog pathway dictates the short-term translational response after hyperosmotic shock. Mol Biol Cell 21(17):3080– 3092PubMedCrossRefGoogle Scholar
  86. Westfall PJ, Thorner J (2006) Analysis of mitogen-activated protein kinase signaling specificity in response to hyperosmotic stress: use of an analog-sensitive hog1 allele. Eukaryotic Cell 5(8):1215–1228PubMedCrossRefGoogle Scholar
  87. Westfall PJ, Patterson JC, Chen RE, Thorner J (2008) Stress resistance and signal fidelity independent of nuclear mapk function. Proc Natl Acad Sci USA 105(34):12212–12217PubMedCrossRefGoogle Scholar
  88. Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie van Leeuwenhoek 58(3):209–217PubMedCrossRefGoogle Scholar
  89. Wysocki R, Chéry CC, Wawrzycka D, Hulle MV, Cornelis R, Thevelein JM, Tamás MJ (2001) The glycerol channel fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol 40(6):1391–1401Google Scholar
  90. Yaakov G, Bell M, Hohmann S, Engelberg D (2003) Combination of two activating mutations in one hog1 gene forms hyperactive enzymes that induce growth arrest. Mol Cell Biol 23(14):4826–4840PubMedCrossRefGoogle Scholar
  91. Yaakov G, Duch A, Garca-Rubio M, Clotet J, Jimenez J, Aguilera A, Posas F (2009) The stress-activated protein kinase hog1 mediates s phase delay in response to osmostress. Mol Biol Cell 20(15):3572–3582PubMedCrossRefGoogle Scholar
  92. Yamamoto K, Tatebayashi K, Tanaka K, Saito H (2010) Dynamic control of yeast map kinase network by induced association and dissociation between the ste50 scaffold and the opy2 membrane anchor. Mol Cell 40(1):87–98PubMedCrossRefGoogle Scholar
  93. Yang HY, Tatebayashi K, Yamamoto K, Saito H (2009) Glycosylation defects activate filamentous growth kss1 mapk and inhibit osmoregulatory hog1 mapk. EMBO J 28(10):1380–1391PubMedCrossRefGoogle Scholar
  94. Zähringer H, Thevelein JM, Nwaka S (2000) Induction of neutral trehalase nth1 by heat and osmotic stress is controlled by stre elements and msn2/msn4 transcription factors: variations of pka effect during stress and growth. Mol Microbiol 35(2):397–406PubMedCrossRefGoogle Scholar
  95. Zapater M, Clotet J, Escoté X, Posas F (2005) Control of cell cycle progression by the stress-activated hog1 mapk. Cell Cycle 4(1):6–7PubMedCrossRefGoogle Scholar
  96. Zi Z, Liebermeister W, Klipp E (2010) A quantitative study of the hog1 MAPK response to fluctuating osmotic stress in Saccharomyces cerevisiae. PLoS One 5(3):e9522Google Scholar
  97. Zou X, Peng T, Pan Z (2008) Modeling specificity in the yeast mapk signaling networks. J Theor Biol 250(1):139–155PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Theoretical BiophysicsHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations