Skip to main content

A Dynamic Physical Model of Cell Migration, Differentiation and Apoptosis in Caenorhabditis elegans

  • Conference paper
  • First Online:
Advances in Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 736))

  • 2790 Accesses

Abstract

The germ line of the nematode C. elegansprovides a paradigm to study essential developmental concepts like stem cell differentiation and apoptosis. Here, we have created a computational model encompassing these developmental landmarks and the resulting movement of germ cells along the gonadal tube. We have used a technique based on molecular dynamics (MD) to model the physical movement of cells solely based on the force that arises from dividing cells. This novel way of using MD to drive the model enables calibration of simulation and experimental time. Based on this calibration, the analysis of our model shows that it is in accordance with experimental observations. In addition, the model provides insights into kinetics of molecular pathways within individual cells as well as into physical aspects like the cell density along the germ line and in local neighbourhoods of individual germ cells. In the future, the presented model can be used to test hypotheses about diverse aspects of development like stem cell division or programmed cell death. An iterative process of evolving this model and experimental testing in the model system C. eleganswill provide new insights into key developmental aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hillier LW, Coulson A, Murray JI, Bao Z, Sulston JE, Waterston RH (2005) Genomics in C. elegans: so many genes, such a little worm. Genome Res 15(12):1651–1660

    Article  CAS  PubMed  Google Scholar 

  3. Potts MB, Cameron S (2010) Cell lineage and cell death: Caenorhabditis elegansand cancer research. Nat Rev Cancer 11:50–58

    Article  PubMed  Google Scholar 

  4. Joshi PM, Riddle MR, Djabrayan NJV, Rothman JH (2010) Caenorhabditis elegansas a model for stem cell biology. Dev Dynam 239(5):1539–1554

    Article  CAS  Google Scholar 

  5. Riddle DL, Blumenthal T, Meyer BJ, Priess JR (1997) C. elegansII. CSHL, Cold Spring Harbor, New York

    Google Scholar 

  6. Corsi AK (2006) A biochemist’s guide to Caenorhabditis elegans. Anal Biochem 359(1):1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sulston J (1977) Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev Biol 56(1):110–156

    Google Scholar 

  8. Kipreos ET (2005) C. eleganscell cycles: invariance and stem cell divisions. Nature reviews. Mol Cell Biol 6(10):766–776

    CAS  Google Scholar 

  9. Hubbard EJA, Greenstein D (2005) Introduction to the germ line. WormBook: the online review of C. elegansbiology, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.18.1, http://www.wormbook.org

  10. Kimble J, Crittenden SL (2005) Germline proliferation and its control. WormBook: the online review of C. elegansbiology, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.13.1, http://www.wormbook.org

  11. Gartner A, Boag PR, Blackwell TK (2008) Germline survival and apoptosis. WormBook: the online review of C. elegansbiology, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.145.1, http://www.wormbook.org

  12. Korta DZ, Hubbard EJA (2010) Soma-germline interactions that influence germline proliferation in Caenorhabditis elegans. Dev Dynam 239(5):1449–1459

    CAS  Google Scholar 

  13. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell144(5):646–674

    Google Scholar 

  14. Krantic S, Mechawar N, Reix S, Quirion R (2005) Molecular basis of programmed cell death involved in neurodegeneration. Trends Neurosci 28(12):670–676

    Article  CAS  PubMed  Google Scholar 

  15. Hirsh D, Oppenheim D, Klass M (1976) Development of the reproductive system of Caenorhabditis elegans. Dev Biol 49(1):200–219

    Article  CAS  PubMed  Google Scholar 

  16. Hansen D, Hubbard EJA, Schedl T (2004) Multi-pathway control of the proliferation versus meiotic development decision in the Caenorhabditis elegansgermline. Dev Biol 268(2):342–357

    Article  CAS  PubMed  Google Scholar 

  17. Kimble J, White J (1981) On the control of germ cell development in Caenorhabditis elegans1. Dev Biol 81(2):208–219

    Article  CAS  PubMed  Google Scholar 

  18. Waters KA, Reinke V (2011) Extrinsic and intrinsic control of germ cell proliferation in Caenorhabditis elegans. Mol Rep Dev 78(3):151–160

    Article  CAS  Google Scholar 

  19. Gumienny TL, Lambie E, Hartwieg E, Horvitz HR, Hengartner MO (1999) Genetic control of programmed cell death in the Caenorhabditis eleganshermaphrodite germline. Development 126(5):1011–1022

    Article  CAS  PubMed  Google Scholar 

  20. Church DL, Guan KL, Lambie EJ (1995) Three genes of the MAP kinase cascade, mek-2, mpk-1/sur-1 and let-60 ras, are required for meiotic cell cycle progression in Caenorhabditis elegans. Development 121(8):2525–2535

    Article  CAS  PubMed  Google Scholar 

  21. Alder BJ, Wainwright TE (1959) Studies in molecular dynamics. I. General method. J Chem Phys 31(2):459

    Article  CAS  Google Scholar 

  22. Drasdo D, Kree R, McCaskill J (1995) Monte Carlo approach to tissue-cell populations. Phys Rev E 52(6):6635–6657

    Article  CAS  Google Scholar 

  23. Beyer T, Meyer-Hermann M (2007) Modeling emergent tissue organization involving high-speed migrating cells in a flow equilibrium. Phys Rev E 76(2):27

    Article  Google Scholar 

  24. Beyer T, Meyer-Hermann M (2009) Multiscale modeling of cell mechanics and tissue organization. IEEE Eng Med Biol Mag 28(2):38–45

    Article  PubMed  Google Scholar 

  25. Palsson E (2001) A three-dimensional model of cell movement in multicellular systems. Future Gener Comput Syst 17(7):835–852

    Article  Google Scholar 

  26. Palsson E, Othmer HG (2000) A model for individual and collective cell movement in Dictyostelium discoideum. Proc Natl Acad Sci USA 97(19):10448–10453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schaller G, Meyer-Hermann M (2005) Multicellular tumor spheroid in an off-lattice Voronoi–Delaunay cell model. Phys Rev E 71(5):1–16

    Article  Google Scholar 

  28. Crittenden SL, Leonhard KA, Byrd DT, Kimble J (2006) Cellular analyses of the mitotic region in the Caenorhabditis elegansadult germ line. Mol Biol Cell 17(7):3051–3061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maciejowski J, Ugel N, Mishra B, Isopi M, Hubbard EJA (2006) Quantitative analysis of germline mitosis in adult C. elegans. Dev Biol 292(1):142–151

    Article  CAS  PubMed  Google Scholar 

  30. Swope WCA (1982) Computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys 76(1):637

    Article  CAS  Google Scholar 

  31. Syme D, Granicz A, Cisternino A (2007) Expert F#. Apress, Berkeley, California

    Book  Google Scholar 

  32. Accompanying movie [Internet] (2011) [cited 2011 Mar 27]. http://www.cs.le.ac.uk/people/npiterman/publications/2011/BEPHHF/index.html

  33. Cinquin O, Crittenden SL, Morgan DE, Kimble J (2010) Progression from a stem cell-like state to early differentiation in the C. elegansgerm line. Proc Natl Acad Sci USA 107(5):2048–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to James Margetson for contributing an initial environment program in F# on which this model is based and for his support on the usage of F#. Antje Beyer is grateful to Adrian Hemmen for introducing her to the MD framework and for critical and helpful discussions of the model. This work was supported in part by the European Union grant FP7 PANACEA 222936 (Jasmin Fisher, Michael O. Hengartner and Alex Hajnal) and the Swiss National Science Foundation (Michael O. Hengartner). Antje Beyer is funded by Microsoft Research through its PhD Scholarship Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmin Fisher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Beyer, A., Eberhard, R., Piterman, N., Hengartner, M.O., Hajnal, A., Fisher, J. (2012). A Dynamic Physical Model of Cell Migration, Differentiation and Apoptosis in Caenorhabditis elegans. In: Goryanin, I.I., Goryachev, A.B. (eds) Advances in Systems Biology. Advances in Experimental Medicine and Biology, vol 736. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7210-1_12

Download citation

Publish with us

Policies and ethics