Skip to main content

Modular Analysis of Biological Networks

  • Conference paper
  • First Online:
Advances in Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 736))

  • 3362 Accesses

Abstract

The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander RP, Kim PM, Emonet T, Gerstein MB (2009) Understanding modularity in molecular networks requires dynamics. Sci Signal 2(81):44

    Google Scholar 

  2. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8(6): 450–461

    CAS  PubMed  Google Scholar 

  3. Bruggeman FJ, Snoep JL, Westerhoff HV (2008) Control, responses and modularity of cellular regulatory networks: A control analysis perspective. IET Syst Biol 2(6):397–410

    CAS  PubMed  Google Scholar 

  4. Bruggeman FJ, Westerhoff HV, Hoek JB, Kholodenko BN (2002) Modular response analysis of cellular regulatory networks. J Theor Biol 218(4):507–520.

    CAS  PubMed  Google Scholar 

  5. Chen WW, Schoeberl B, Jasper PJ, Niepel M, Nielsen UB, Lauffenburger DA, Sorger PK (2009) Input–output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol Syst Biol 5:239

    PubMed  PubMed Central  Google Scholar 

  6. Consortium, TGO (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    Google Scholar 

  7. Csete M, Doyle J (2002) Reverse engineering of biological complexity. Science 295: 1664–1669

    CAS  PubMed  Google Scholar 

  8. DasGupta B, Enciso GA, Sontag E, Zhang Y (2007) Algorithmic and complexity results for decompositions of biological networks into monotone subsystems. Biosystems 90(1):161–178

    PubMed  Google Scholar 

  9. Dong J, Horvath S (2007) Understanding network concepts in modules. BMC Syst Biol 1:24

    PubMed  PubMed Central  Google Scholar 

  10. Ederer M, Sauter T, Bullinger E, Gilles ED, Allgower F (2003) An Approach for Dividing Models of Biological Reaction Networks into Functional Units. Simulation 79(12):703–716

    Google Scholar 

  11. Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):175–174

    Google Scholar 

  12. Francis B, Wonham W (1976) The internal model principle of control theory. Automatica 12:457–465

    Google Scholar 

  13. Gagneur J, Jackson DB, Casari G (2003) Hierarchical analysis of dependency in metabolic networks. Bioinformatics 19(8):1027–1034

    CAS  PubMed  Google Scholar 

  14. Hartwell L, Hopfield J, Leibler S, Murray A (1999) From molecular to modular cell biology. Nature 402 (Suppl.):C47–C52

    CAS  PubMed  Google Scholar 

  15. Hirsch M, Smith H (2006) Monotone dynamical systems. Handbook Differen Equat Ord Differen Equat 2:239–357

    Google Scholar 

  16. Ingram P, Stumpf M, Stark J (2006) Network motifs: structure does not determine function. BMC Genom 7(1):108

    Google Scholar 

  17. Kholodenko BN, Kiyatkin A, Bruggeman FJ, Sontag ED, Westerhoff HV, Hoek JB (2002) Untangling the wires: A strategy to trace functional interactions in signaling and gene networks. Proc Natl Acad Sci USA 99(20):12841–12846

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    CAS  PubMed  Google Scholar 

  19. Klamt S, Haus UU, Theis F (2009) Hypergraphs and cellular networks. PLoS Comput Biol 5(5):e1000385

    PubMed  PubMed Central  Google Scholar 

  20. Klamt S, Stelling J (2002) Combinatorial complexity of pathway analysis in metabolic networks. Mol Biol Rep 29:233–236

    CAS  PubMed  Google Scholar 

  21. Koonin EV, Wolf YI, Karev GP, Almaas E, Barabasi A.L (2006) Power laws in biological networks. In: Power Laws, Scale-Free Networks and Genome Biology, Molecular Biology Intelligence Unit, Springer USA, 1–11

    Google Scholar 

  22. Lauffenburger DA (2000) Cell signaling pathways as control modules: complexity for simplicity? Proc Natl Acad Sci USA 97(10):5031–5033

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Marchisio MA, Stelling J (2008) Computational design of synthetic gene circuits with composable parts. Bioinformatics 24(17):1903–1910

    CAS  PubMed  Google Scholar 

  24. Montanez R, Medina MA, Sole RV, Rodrigues-Caso C (2010) When metabolism meets topology: Reconciling metaboltie and reaction networks. BioEssays 32:246–256

    CAS  PubMed  Google Scholar 

  25. Nurse P (2003) Understanding cells. Nature 424:883

    CAS  PubMed  Google Scholar 

  26. Pfeiffer T, Sanchez-Valdenebro I, Nuno J, Montero F, Schuster S (1999) METATOOL: For studying metabolic networks. Bioinformatics 15:251–257

    CAS  PubMed  Google Scholar 

  27. Pinkert S, Schultz J, Reichardt J (2010) Protein interaction networks – More than mere modules. PLoS Comput Biol 6(1):e1000659

    PubMed  PubMed Central  Google Scholar 

  28. Poolman MG, Sebu C, Pidcock MK, Fell DA (2007) Modular decomposition of metabolic systems via null-space analysis. J Theor Biol 249(4):691–705

    CAS  PubMed  Google Scholar 

  29. Przulj N (2007) Biological network comparison using graphlet degree distribution. Bioinformatics 23(2):e177–e183

    CAS  PubMed  Google Scholar 

  30. Reder, C (1988) Metabolic control theory: A structural approach. J Theor Biol 135:175–201

    CAS  PubMed  Google Scholar 

  31. Saez-Rodriguez J, Gayer S, Ginkel M, Gilles E.D (2008) Automatic decomposition of kinetic models of signaling networks minimizing the retroactivity among modules. Bioinformatics 24(16):i213–i219

    PubMed  Google Scholar 

  32. Seebacher J, Gavin AC (2011) SnapShot: Protein–protein interaction networks. Cell 144(6):1000.e1

    CAS  PubMed  Google Scholar 

  33. Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31(1): 64–68

    CAS  PubMed  Google Scholar 

  34. Sontag E (2007) Monotone and near-monotone biochemical networks. Lecture Notes in Control and Information Sciences, vol. 357, pp. 79–122

    Google Scholar 

  35. Sontag ED (2003) Adaptation and regulation with signal detection implies internal model. Syst Contr Lett 50(2):119–126

    Google Scholar 

  36. Sontag ED (2004) Some new directions in control theory inspired by systems biology. Syst Biol 1(1):9–18

    CAS  Google Scholar 

  37. Soranzo N, Ramezani F, Iacono G, Altafini C (2010) Graph-theoretical decompositions of large-scale biological networks. Automatica, conditionally accepted.

    Google Scholar 

  38. Stelling J, Kremling A, Ginkel M, Bettenbrock K, Gilles E (2001) Towards a Virtual Biological Laboratory. In: Kitano H (ed) Foundations of Systems Biology, MIT Press, Cambridge, MA, pp. 189–212

    Google Scholar 

  39. Terzer M, Maynard ND, Covert, MW, Stelling J (2009) Genome-scale metabolic networks. Wiley Interdiscip Rev Syst Biol Med 1(3):285–297

    CAS  PubMed  Google Scholar 

  40. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles, and blinkers: Dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15(2):221–231

    CAS  PubMed  Google Scholar 

  41. Tyson JJ, Novák B (2010) Functional motifs in biochemical reaction networks. Annu Rev Phys Chem 61:219–240

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Vecchio DD, Ninfa AJ, Sontag ED (2008) Modular cell biology: retroactivity and insulation. Mol Syst Biol 4:161

    PubMed  PubMed Central  Google Scholar 

  43. Wagner GP, Pavlicev M, Cheverud JM (2007) The road to modularity. Nat Rev Genet 8(12):921–931

    CAS  PubMed  Google Scholar 

  44. Wang Z, Zhang J (2007) In search of the biological significance of modular structures in protein networks. PLoS Comput Biol 3(6):e107

    PubMed  PubMed Central  Google Scholar 

  45. Westerhoff HV, Kolodkin A, Conradie R., Wilkinson SJ, Bruggeman FJ, Krab K, van Schuppen JH, Hardin H, Bakker BM, Moné MJ, Rybakova KN, Eijken M, van Leeuwen HJP, Snoep JL (2009) Systems biology towards life in silico: Mathematics of the control of living cells. J Math Biol 58(1–2):7–34

    PubMed  Google Scholar 

  46. Yi TM, Huang Y, Simon MI, Doyle J (2000) Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc Natl Acad Sci USA 97(9):4649–4653

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yoon J, Si Y, Nolan R, Lee K (2007) Modular decomposition of metabolic reaction networks based on flux analysis and pathway projection. Bioinformatics 23(18):2433–2440

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Financial support by the EU FP7 project UNICELLSYS is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Stelling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Kaltenbach, HM., Stelling, J. (2012). Modular Analysis of Biological Networks. In: Goryanin, I.I., Goryachev, A.B. (eds) Advances in Systems Biology. Advances in Experimental Medicine and Biology, vol 736. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7210-1_1

Download citation

Publish with us

Policies and ethics