Skip to main content

Angiotensin Converting Enzyme I/D Polymorphism and Cardiovascular Risk: Disclosed Story

  • Chapter
  • First Online:
Genes and Cardiovascular Function

Abstract

The renin–angiotensin system (RAS) plays an important role in regulating the main characteristics of cardiovascular functions. The aim of the study is to test possible associations of ACE I/D polymorphism with coronary artery disease (CAD) and diabetes evaluated together in 600 persons with coronarography. Four groups of patients (the CAD  +  DM  +  patients with both CAD and diabetes, the CAD  +  DM  −  patients with CAD, the CAD  −  DM  +  with only diabetes, and the CAD  −  DM  −  without CAD as well as diabetes) were compared in ACE I/D polymorphism, intermediate phenotypes (hemodynamic and metabolic parameters), and pharmacological therapy. We proved a number of significant differences especially between the CAD  +  DM  +  and CAD  −  DM  −  groups. Although the patients had been treated according to their clinical state, we were able to prove significant differences between ACE I/D genotypes (in the model of heterozygote advantage) in these groups (hypertension, obesity, BMI, renal insufficiency, more cardiovascular risk factors, some inflammatory factors, glycemia, and lipid profile). The drugs were administrated more frequently to the DD  +  II carriers, which further supports the heterozygote advantage hypothesis tested in the study. We proved a heterozygote advantage model for ACE I/D polymorphism, CAD, and diabetes mellitus confirmed by associations with intermediate phenotypes and by therapy schedule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dostal DE, Baker KM. The cardiac renin–angiotensin system: conceptual, or a regulator of cardiac function? Circ Res. 1999;85:643–50.

    PubMed  CAS  Google Scholar 

  2. Hall JE. Historical perspective of the renin–angiotensin system. Mol Biotechnol. 2003;24:27–39.

    Article  PubMed  CAS  Google Scholar 

  3. Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417(6891):822–8.

    Article  PubMed  CAS  Google Scholar 

  4. Chappell MC, Modralt JG, Diz DI, et al. Novel aspects of the renal renin-angiotensin system: angiotensin-(1-7), ACE2 and blood pressure regulation. Contrib Nephrol. 2004;143:77–89.

    Article  PubMed  Google Scholar 

  5. Raizada MK, Ferreira AJ. ACE2: a new target for cardiovascular disease therapeutics. J Cardiovasc Pharmacol. 2007;50:112–19.

    Article  PubMed  CAS  Google Scholar 

  6. Fyhrquist F, Saijonmaa O. Renin-angiotensin system revisited. J Intern Med. 2008;264:224–36.

    Article  PubMed  CAS  Google Scholar 

  7. Iwai M, Horiuchi M. Devil and angel in the renin-angiotensin system: ACE-angiotensin II-AT1 receptor axis vs. ACE2-angiotensin-(1-7)-Mas receptor axis. Hypertens Res. 2009;32:533–6.

    Article  PubMed  CAS  Google Scholar 

  8. Booz GW, Baker KM. Intracellular signaling and the cardiac renin angiotensin system. In: De Mello WC, editor. Renin angiotensin system and the heart. West Sussex: John Wiley & Sons; 2004. p. 1–17.

    Google Scholar 

  9. Zou Y, Akazawa H, Qin Y, et al. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol. 2004;6:499–506.

    Article  PubMed  CAS  Google Scholar 

  10. Benigni A, Cassis P, Remuzzi G. Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med. 2010;2:247–57.

    Article  PubMed  CAS  Google Scholar 

  11. Lévy BI. Can angiotensin II type 2 receptors have deleterious effects in cardiovascular disease? Implications for therapeutic blockade of the renin-angiotensin system. Circulation. 2004;109:8–13.

    Article  PubMed  Google Scholar 

  12. Nouet S, Amzallag N, Li JM, et al. Trans-inactivation of receptor tyrosine kinases by novel angiotensin II AT2 receptor-interacting protein ATIP. J Biol Chem. 2004;279:28989–97.

    Article  PubMed  CAS  Google Scholar 

  13. Re RN. Tissue renin angiotensin systems. Med Clin North Am. 2004;88:19–38.

    Article  PubMed  CAS  Google Scholar 

  14. Pohl M, Kaminski H, Castrop H, et al. Intrarenal renin angiotensin system revisited: role of megalin-dependent endocytosis along the proximal nephron. J Biol Chem. 2010;285(53):41935–46.

    Article  PubMed  CAS  Google Scholar 

  15. Malhotra R, Sadoshima J, Broscius FC, et al. Mechanical stretch and angiotensin II differentially upregulated the renin angiotensin system in cardiac myocytes in vitro. Circ Res. 1999;85:137–46.

    PubMed  CAS  Google Scholar 

  16. Haznedaroglu IC, Ozturk MA. Towards the understanding of the local hematopoietic bone marrow renin-angiotensin system. Int J Biochem Cell Biol. 2003;35:867–80.

    Article  PubMed  CAS  Google Scholar 

  17. Haznedaroglu IC, Tuncer S, Gursoy M. A local renin– angiotensin system in the bone marrow. Med Hypotheses. 1996;46:507–10.

    Article  PubMed  CAS  Google Scholar 

  18. Strawn W, Richmond R, Ferrario C. A new understanding of atherosclerosis: The bone marrow response-to-lipid hypothesis. In: Heart disease: pathogenesis, diagnosis and treatment. Washington, DC: 3rd World Congress on Heart Disease; 2003. p. 183–8.

    Google Scholar 

  19. Strawn WB, Ferrario CM. Angiotensin II AT(1) receptor blockade normalizes CD11b(+) monocyte production in bone marrow of hypercholesterolemic monkeys. Atherosclerosis. 2008;196:624–32.

    Article  PubMed  CAS  Google Scholar 

  20. Vasku A, Soucek M, Znojil V, et al. Does angiotensin I-converting enzyme inhibitor therapy have an antiproliferative effect on blood-forming bone marrow? Exp Hematom. 1998;26:277–8.

    CAS  Google Scholar 

  21. Vasku A, Holla L, Znojil V. The best model of a cat is a cat, especially the same cat. Exp Hematol. 1999;27:187–8.

    Article  PubMed  CAS  Google Scholar 

  22. Costerousse O, Jaspard E, Wei L, et al. The angiotensin I-converting enzyme (kininase II): molecular organization and regulation of its expression in humans. J Cardiovasc Pharmacol. 1992;20(Suppl. 9):S10–15.

    Article  PubMed  CAS  Google Scholar 

  23. Kessler SP, Rowe TM, Gomos JB, et al. Physiological non-equivalence of the two isoforms of angiotensin-converting enzyme. J Biol Chem. 2000;275:26259–64.

    Article  PubMed  CAS  Google Scholar 

  24. Waeber B. Combination therapy with ACE inhibitors/angiotensin II receptor antagonists and diuretics in hypertension. Expert Rev Cardiovasc Ther. 2003;1:43–50.

    Article  PubMed  CAS  Google Scholar 

  25. Ryan MJ, Sigmund CD. ACE, ACE inhibitors, and other JNK. Circ Res. 2004;94:1–3.

    Article  PubMed  CAS  Google Scholar 

  26. Azizi M, Junot C, Ezan E, et al. Angiotensin I-converting enzyme and metabolism of the haematological peptide N-acetyl-seryl-aspartyl-lysyl-proline. Clin Exp Pharmacol Physiol. 2001;28:1066–106.

    Article  PubMed  CAS  Google Scholar 

  27. Kanasaki K, Koya D, Sugimoto T, et al. N-Acetyl-seryl-aspartyl-lysyl-proline inhibits TGF-beta-mediated plasminogen activator inhibitor-1 expression via inhibition of Smad pathway in human mesangial cells. J Am Soc Nephrol. 2003;14:863–72.

    Article  PubMed  CAS  Google Scholar 

  28. Pokharel S, Rasoul S, Roks AJ, et al. N-Acetyl-ser-asp-lys-pro inhibits phosphorylation of Smad2 in cardiac fibroblasts. Hypertension. 2002;40:155–61.

    Article  PubMed  CAS  Google Scholar 

  29. Baudin B. New aspects on angiotensin-converting enzyme: from gene to disease. Clin Chem Lab Med. 2002;40:256–65.

    Article  PubMed  CAS  Google Scholar 

  30. Rigat B, Hubert C, Corvol P, et al. PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1). Nucleic Acids Res. 1992;20:1433.

    Article  PubMed  CAS  Google Scholar 

  31. Covolo L, Gelatti U, Metra M, et al. Angiotensin-converting-enzyme gene polymorphism and heart failure: a case-control study. Biomarkers. 2003;8:429–36.

    Article  PubMed  CAS  Google Scholar 

  32. Schunkert H. Polymorphism of the angiotensin-converting enzyme gene and cardiovascular disease. J Mol Med. 1997;75:867–75.

    Article  PubMed  CAS  Google Scholar 

  33. Akbulut T, Bilsel T, Terzi S, et al. Relationship between ACE gene polymorphism and ischemic chronic heart failure in Turkish population. Eur J Med Res. 2003;8:247–53.

    PubMed  CAS  Google Scholar 

  34. Abraham MR, Olson LJ, Joyner MJ, et al. Angiotensin-converting enzyme genotype modulates pulmonary function and exercise capacity in treated patients with congestive stable heart failure. Circulation. 2002;106:1794–9.

    Article  PubMed  CAS  Google Scholar 

  35. Di Pasquale P, Cannizzaro S, Scalzo S, et al. Cardiovascular effects of I/D angiotensin-converting enzyme gene polymorphism in healthy subjects. Findings after follow-up of six years. Acta Cardiol. 2005;60:427–35.

    Article  PubMed  Google Scholar 

  36. Deckers JW, Deinum J, van Duijn CM. Angiotensin converting enzyme insertion/deletion polymorphism and the risk of heart failure in hypertensive subjects. Eur Heart J. 2004;25:2143–8.

    Article  PubMed  Google Scholar 

  37. Huang W, Xie C, Zhou H, et al. Association of the angiotensin-converting enzyme gene polymorphism with chronic heart failure in Chinese Han patients. Eur J Heart Fail. 2004;6:23–7.

    Article  PubMed  CAS  Google Scholar 

  38. Niu W, Qi Y, Gao P, et al. Angiotensin converting enzyme D allele is associated with an increased risk of type 2 diabetes: evidence from a meta-analysis. Endocr J. 2010;57:431–8.

    Article  PubMed  CAS  Google Scholar 

  39. Abraham MR, Olson LJ, Joyner MJ, et al. Angiotensin-converting enzyme genotype modulates pulmonary function and exercise capacity in treated patients with congestive stable heart failure. Circulation. 2002;106:1794–9.

    Article  PubMed  CAS  Google Scholar 

  40. Busjahn A, Voss A, Knoblauch H, et al. Angiotensin-converting enzyme and angiotensinogen gene polymorphisms and heart rate variability in twins. Am J Cardiol. 1998;81:755–60.

    Article  PubMed  CAS  Google Scholar 

  41. Fujii M, Wada A, Tsutamoto T, et al. Bradykinin improves left ventricular diastolic function under long-term angiotensin-converting enzyme inhibition in heart failure. Hypertension. 2002;39:952–7.

    Article  PubMed  CAS  Google Scholar 

  42. Montgomery H, Brull D, Humphries SE. Analysis of gene-environment interactions by “stressing-the-genotype” studies: the angiotensin converting enzyme and exercise-induced left ventricular hypertrophy as an example. Ital Heart J. 2002;3:10–4.

    PubMed  Google Scholar 

  43. Candy GP, Skudicky D, Mueller UK, et al. Association of left ventricular systolic performance and cavity size with angiotensin-converting enzyme genotype in idiopathic dilated cardiomyopathy. Am J Cardiol. 1999;83:740–4.

    Article  PubMed  CAS  Google Scholar 

  44. Vancura V, Hubacek J, Malek I, et al. Does angiotensin-converting enzyme polymorphism influence the clinical manifestation and progression of heart failure in patients with dilated cardiomyopathy? Am J Cardiol. 1999;83:461–2.

    Article  PubMed  CAS  Google Scholar 

  45. Levy BI, Schiffrin EL, Mourad JJ, et al. Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation. 2008;26:968–76.

    Article  Google Scholar 

  46. Grammer TB, Renner W, von Karger S, et al. The angiotensin-I converting enzyme I/D polymorphism is not associated with type 2 diabetes in individuals undergoing coronary angiography. (The Ludwigshafen Risk and Cardiovascular Health Study). Mol Genet Metab. 2006;88:378–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the project IGA NS10206-3/2009 of the Ministry of Health of the Czech Republic.

Special thanks to Prof. Jaroslav Meluzín, MD, CSc. and Vladimír Kincl, MD from the 1st Department of Internal Medicine/Cardioangiology, St. Ann’s Faculty Hospital Brno, Faculty of Medicine, Masaryk University for providing clinical data databases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Vasku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vasku, A., Blahak, J., Baumgartner, D., Bienertova-Vasku, J. (2011). Angiotensin Converting Enzyme I/D Polymorphism and Cardiovascular Risk: Disclosed Story. In: Ostadal, B., Nagano, M., Dhalla, N. (eds) Genes and Cardiovascular Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7207-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7207-1_13

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7206-4

  • Online ISBN: 978-1-4419-7207-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics