Advertisement

High Throughput Molecular Profiling Approaches for the Identifications of Genomic Alterations and Therapeutic Targets in Oral Cancer

  • Xiaofeng Zhou
  • Shen Hu
  • David T. Wong
Chapter

Abstract

Tumors, including oral squamous cell carcinoma (OSCC), develop through the combined processes of genomic instability, alteration, and selection, resulting in clonal expansion of cells that have accumulated the most advantageous set of genetic aberrations. With the human genome deciphered, high-throughput molecular profiling technologies are currently linking genome-wide transcriptome, proteome and mutation profiles with biological and disease phenotypes, which present an unprecedented opportunity for advancing the diagnosis and treatment of cancer. In this chapter, we aim to summarize modern genomics and proteomics technologies that can significantly facilitate our understanding of the molecular events underlying the development of OSCC. Understanding the molecular and genetic alterations in the pathogenesis of OSCC will help elucidate the mechanisms involved in tumor formation as well as identify potential targets for improved diagnosis and treatment of OSCC.

Keywords

Oral Cancer Oral Squamous Cell Carcinoma Comparative Genomic Hybridization Oral Squamous Cell Carcinoma Locked Nucleic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207PubMedCrossRefGoogle Scholar
  2. Almofti A, Uchida D, Begum NM, Tomizuka Y, Iga H, Yoshida H, Sato M (2004) The clinicopathological significance of the expression of CXCR4 protein in oral squamous cell carcinoma. Int J Oncol 25(1):65–71PubMedGoogle Scholar
  3. Bacchiocchi R, Rubini C, Pierpaoli E, Borghetti G, Procacci P, Nocini PF, Santarelli A, Rocchetti R, Ciavarella D, Lo Muzio L et al (2008) Prognostic value analysis of urokinase-type plasminogen activator receptor in oral squamous cell carcinoma: an immunohistochemical study. BMC Cancer 8:220PubMedCrossRefGoogle Scholar
  4. Bachmeier BE, Iancu CM, Jochum M, Nerlich AG (2005) Matrix metalloproteinases in cancer: comparison of known and novel aspects of their inhibition as a therapeutic approach. Expert Rev Anticancer Ther 5(1):149–163PubMedCrossRefGoogle Scholar
  5. Baker EA, Leaper DJ, Hayter JP, Dickenson AJ (2006) The matrix metalloproteinase system in oral squamous cell carcinoma. Br J Oral Maxillo Surg 44(6):482–486CrossRefGoogle Scholar
  6. Baker EA, Leaper DJ, Hayter JP, Dickenson AJ (2007) Plasminogen activator system in oral squamous cell carcinoma. Br J Oral Maxillo Surg 45(8):623–627CrossRefGoogle Scholar
  7. Begum FD, Hogdall CK, Kjaer SK, Christensen L, Blaakaer J, Bock JE, Glud E, Hoyer-Hansen G, Ring-Larsen H, Hogdall EV (2004) The prognostic value of plasma soluble urokinase plasminogen activator receptor (suPAR) levels in stage III ovarian cancer patients. Anticancer Res 24(3b):1981–1985PubMedGoogle Scholar
  8. Bello IO, Vilen ST, Niinimaa A, Kantola S, Soini Y, Salo T (2008) Expression of claudins 1, 4, 5, and 7 and occludin, and relationship with prognosis in squamous cell carcinoma of the tongue. Hum Pathol 39(8):1212–1220PubMedCrossRefGoogle Scholar
  9. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E et al (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37(7):766–770PubMedCrossRefGoogle Scholar
  10. Berezikov E, van Tetering G, Verheul M, van de Belt J, van Laake L, Vos J, Verloop R, van de Wetering M, Guryev V, Takada S et al (2006) Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis. Genome Res 16(10):1289–1298PubMedCrossRefGoogle Scholar
  11. Bignell GR, Huang J, Greshock J, Watt S, Butler A, West S, Grigorova M, Jones KW, Wei W, Stratton MR et al (2004) High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Res 14(2):287–295PubMedCrossRefGoogle Scholar
  12. Blasi F (1996) The urokinase receptor and cell migration. Semin Thromb Hemost 22(6):513–516PubMedCrossRefGoogle Scholar
  13. Blasi F (1997) uPA, uPAR, PAI-1: key intersection of proteolytic, adhesive and chemotactic highways? Immunol Today 18(9):415–417PubMedCrossRefGoogle Scholar
  14. Brennan C, Zhang Y, Leo C, Feng B, Cauwels C, Aguirre AJ, Kim M, Protopopov A, Chin L (2004) High-resolution global profiling of genomic alterations with long oligonucleotide microarray. Cancer Res 64(14):4744–4748PubMedCrossRefGoogle Scholar
  15. Brinkman BM, Wong DT (2006) Disease mechanism and biomarkers of oral squamous cell ­carcinoma. Curr Opin Oncol 18(3):228–233PubMedCrossRefGoogle Scholar
  16. Caspersson T, Zech L, Modest EJ, Foley GE, Wagh U, Simonsson E (1969a) Chemical differentiation with fluorescent alkylating agents in Vicia faba metaphase chromosomes. Exp Cell Res 58(1):128–140PubMedCrossRefGoogle Scholar
  17. Caspersson T, Zech L, Modest EJ, Foley GE, Wagh U, Simonsson E (1969b) DNA-binding fluorochromes for the study of the organization of the metaphase nucleus. Exp Cell Res 58(1):141–152PubMedCrossRefGoogle Scholar
  18. Castoldi M, Schmidt S, Benes V, Noerholm M, Kulozik AE, Hentze MW, Muckenthaler MU (2006) A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 12(5):913–920PubMedCrossRefGoogle Scholar
  19. Castoldi M, Benes V, Hentze MW, Muckenthaler MU (2007) miChip: a microarray platform for expression profiling of microRNAs based on locked nucleic acid (LNA) oligonucleotide capture probes. Methods 43(2):146–152PubMedCrossRefGoogle Scholar
  20. Castoldi M, Schmidt S, Benes V, Hentze MW, Muckenthaler MU (2008) miChip: an array-based method for microRNA expression profiling using locked nucleic acid capture probes. Nat Protoc 3(2):321–329PubMedCrossRefGoogle Scholar
  21. Chen J, He QY, Yuen AP, Chiu JF (2004) Proteomics of buccal squamous cell carcinoma: the involvement of multiple pathways in tumorigenesis. Proteomics 4(8):2465–2475PubMedCrossRefGoogle Scholar
  22. Chiang YY, Tsai MH, Lin TY, Chiang IP (2008) Expression profile of metastasis-related genes in invasive oral cancers. Histol Histopathol 23(10):1213–1222PubMedGoogle Scholar
  23. Cummins JM, He Y, Leary RJ, Pagliarini R, Diaz LA Jr, Sjoblom T, Barad O, Bentwich Z, Szafranska AE, Labourier E (2006) The colorectal microRNAome. Proc Natl Acad Sci USA 103(10):3687–3692PubMedCrossRefGoogle Scholar
  24. Datson NA (2008) Scaling down SAGE: from miniSAGE to microSAGE. Curr Pharm Biotechnol 9(5):351–361PubMedCrossRefGoogle Scholar
  25. Davies JJ, Wilson IM, Lam WL (2005) Array CGH technologies and their applications to cancer genomes. Chromosome 13(3):237–248CrossRefGoogle Scholar
  26. de Hoon M, Hayashizaki Y (2008) Deep cap analysis gene expression (CAGE): genome-wide identification of promoters, quantification of their expression, and network inference. Biotechniques 44(5):627–628, 630, 632PubMedCrossRefGoogle Scholar
  27. de Vicente JC, Fresno MF, Villalain L, Vega JA, Hernandez Vallejo G (2005a) Expression and clinical significance of matrix metalloproteinase-2 and matrix metalloproteinase-9 in oral squamous cell carcinoma. Oral Oncol 41(3):283–293PubMedCrossRefGoogle Scholar
  28. de Vicente JC, Fresno MF, Villalain L, Vega JA, Lopez Arranz JS (2005b) Immunoexpression and prognostic significance of TIMP-1 and -2 in oral squamous cell carcinoma. Oral Oncol 41(6):568–579PubMedCrossRefGoogle Scholar
  29. de Vicente JC, Lequerica-Fernandez P, Santamaria J, Fresno MF (2007) Expression of MMP-7 and MT1-MMP in oral squamous cell carcinoma as predictive indicator for tumor invasion and prognosis. J Oral Pathol Med 36(7):415–424PubMedCrossRefGoogle Scholar
  30. Delilbasi CB, Okura M, Iida S, Kogo M (2004) Investigation of CXCR4 in squamous cell ­carcinoma of the tongue. Oral Oncol 40(2):154–157PubMedCrossRefGoogle Scholar
  31. Denny P, Hagen FK, Hardt M, Liao L, Yan W, Arellanno M, Bassilian S, Bedi GS, Boontheung P, Cociorva D et al (2008) The proteomes of human parotid and submandibular/sublingual gland salivas collected as the ductal secretions. J Proteome Res 7(5):1994–2006PubMedCrossRefGoogle Scholar
  32. Deshpande AM, Wong DT (2008) Molecular mechanisms of head and neck cancer. Expert Rev Anticancer Ther 8(5):799–809PubMedCrossRefGoogle Scholar
  33. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323:643PubMedCrossRefGoogle Scholar
  34. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR (2004) A census of human cancer genes. Nat Rev Cancer 4(3):177–183PubMedCrossRefGoogle Scholar
  35. Geminder H, Sagi-Assif O, Goldberg L, Meshel T, Rechavi G, Witz IP, Ben-Baruch A (2001) A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol 167(8):4747–4757PubMedGoogle Scholar
  36. Gerber DJ, Hall D, Miyakawa T, Demars S, Gogos JA, Karayiorgou M, Tonegawa S (2003) Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit. Proc Natl Acad Sci USA 100(15):8993–8998PubMedCrossRefGoogle Scholar
  37. Ghosh S, Brown R, Jones JC, Ellerbroek SM, Stack MS (2000) Urinary-type plasminogen activator (uPA) expression and uPA receptor localization are regulated by alpha 3beta 1 integrin in oral keratinocytes. J Biol Chem 275(31):23869–23876PubMedCrossRefGoogle Scholar
  38. Ghosh S, Johnson JJ, Sen R, Mukhopadhyay S, Liu Y, Zhang F, Wei Y, Chapman HA, Stack MS (2006) Functional relevance of urinary-type plasminogen activator receptor-alpha3beta1 integrin association in proteinase regulatory pathways. J Biol Chem 281(19):13021–13029PubMedCrossRefGoogle Scholar
  39. Greenlee RT, Murray T, Bolden S, Wingo PA (2000) Cancer statistics, 2000. CA Cancer J Clin 50(1):7–33PubMedCrossRefGoogle Scholar
  40. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999PubMedCrossRefGoogle Scholar
  41. Han B, Nakamura M, Mori I, Nakamura Y, Kakudo K (2005) Urokinase-type plasminogen activator system and breast cancer (review). Oncol Rep 14(1):105–112PubMedGoogle Scholar
  42. Hene L, Sreenu VB, Vuong MT, Abidi SH, Sutton JK, Rowland-Jones SL, Davis SJ, Evans EJ (2007) Deep analysis of cellular transcriptomes – longSAGE versus classic MPSS. BMC Genomics 8:333PubMedCrossRefGoogle Scholar
  43. Higashikawa K, Yoneda S, Taki M, Shigeishi H, Ono S, Tobiume K, Kamata N (2008) Gene expression profiling to identify genes associated with high-invasiveness in human squamous cell carcinoma with epithelial-to-mesenchymal transition. Cancer Lett 264(2):256–264PubMedCrossRefGoogle Scholar
  44. Hoque MO, Lee CC, Cairns P, Schoenberg M, Sidransky D (2003) Genome-wide genetic characterization of bladder cancer: a comparison of high-density single-nucleotide polymorphism arrays and PCR-based microsatellite analysis. Cancer Res 63(9):2216–2222PubMedGoogle Scholar
  45. Hu S, Wong DT (2007) Oral cancer proteomics. Curr Opin Mol 9(5):467–476Google Scholar
  46. Hu S, Xie Y, Ramachandran P, Ogorzalek Loo RR, Li Y, Loo JA, Wong DT (2005) Large-scale identification of proteins in human salivary proteome by liquid chromatography/mass spectrometry and two-dimensional gel electrophoresis-mass spectrometry. Proteomics 5(6):1714–1728PubMedCrossRefGoogle Scholar
  47. Hu S, Loo JA, Wong DT (2006) Human body fluid proteome analysis. Proteomics 6(23):6326–6353PubMedCrossRefGoogle Scholar
  48. Hu S, Wang J, Meijer J, Ieong S, Xie Y, Yu T, Zhou H, Henry S, Vissink A, Pijpe J et al (2007) Salivary proteomic and genomic biomarkers for primary Sjogren’s syndrome. Arthritis Rheum 56(11):3588–3600PubMedCrossRefGoogle Scholar
  49. Hu S, Arellano M, Boontheung P, Wang J, Zhou H, Jiang J, Elashoff D, Wei R, Loo JA, Wong DT (2008) Salivary proteomics for oral cancer biomarker discovery. Clin Cancer Res 14(19):6246–6252PubMedCrossRefGoogle Scholar
  50. Hu S, Zhou M, Jiang J, Wang J, Elashoff D, Gorr S, Michie SA, Spijkervet FK, Bootsma H, Kallenberg CG et al (2009) Systems biology analysis of Sjogren’s syndrome and mucosa-associated lymphoid tissue lymphoma in parotid glands. Arthritis Rheum 60(1):81–92PubMedCrossRefGoogle Scholar
  51. Huang J, Wei W, Zhang J, Liu G, Bignell GR, Stratton MR, Futreal PA, Wooster R, Jones KW, Shapero MH (2004) Whole genome DNA copy number changes identified by high density oligonucleotide arrays. Hum Genomics 1(4):287–299PubMedGoogle Scholar
  52. Hundsdorfer B, Zeilhofer HF, Bock KP, Dettmar P, Schmitt M, Kolk A, Pautke C, Horch HH (2005) Tumour-associated urokinase-type plasminogen activator (uPA) and its inhibitor PAI-1 in normal and neoplastic tissues of patients with squamous cell cancer of the oral cavity – ­clinical relevance and prognostic value. J Craniomaxillofac Surg 33(3):191–196PubMedGoogle Scholar
  53. Ikebe T, Shinohara M, Takeuchi H, Beppu M, Kurahara S, Nakamura S, Shirasuna K (1999) Gelatinolytic activity of matrix metalloproteinase in tumor tissues correlates with the invasiveness of oral cancer. Clin Exp 17(4):315–323CrossRefGoogle Scholar
  54. Imoto H, Hirotsune S, Muramatsu M, Okuda K, Sugimoto O, Chapman VM, Hayashizaki Y (1994) Direct determination of NotI cleavage sites in the genomic DNA of adult mouse kidney and human trophoblast using whole-range restriction landmark genomic scanning. DNA Res 1(5):239–243PubMedCrossRefGoogle Scholar
  55. Ishikawa T, Nakashiro K, Hara S, Klosek SK, Li C, Shintani S, Hamakawa H (2006) CXCR4 expression is associated with lymph-node metastasis of oral squamous cell carcinoma. Int J Oncol 28(1):61–66PubMedGoogle Scholar
  56. Ishkanian AS, Malloff CA, Watson SK, DeLeeuw RJ, Chi B, Coe BP, Snijders A, Albertson DG, Pinkel D, Marra MA et al (2004) A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet 36(3):299–303PubMedCrossRefGoogle Scholar
  57. Ito H, Hatori M, Kinugasa Y, Irie T, Tachikawa T, Nagumo M (2003) Comparison of the expression profile of metastasis-associated genes between primary and circulating cancer cells in oral squamous cell carcinoma. Anticancer Res 23(2B):1425–1431PubMedGoogle Scholar
  58. Izumiyama Y, Ohiro Y, Higashino F, Yoshida K, Taguchi K, Todo S, Kohgo T, Totsuka Y, Shindoh M (2005) E1AF expression is closely correlated with malignant phenotype of tongue squamous cell carcinoma through activation of MT1-MMP gene promoters. Oncol Rep 13(4):715–720PubMedGoogle Scholar
  59. Janne PA, Li C, Zhao X, Girard L, Chen TH, Minna J, Christiani DC, Johnson BE, Meyerson M (2004) High-resolution single-nucleotide polymorphism array and clustering analysis of loss of heterozygosity in human lung cancer cell lines. Oncogene 23(15):2716–2726PubMedCrossRefGoogle Scholar
  60. Jiang Y, Goldberg ID, Shi YE (2002) Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene 21(14):2245–2252PubMedCrossRefGoogle Scholar
  61. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258(5083):818–821PubMedCrossRefGoogle Scholar
  62. Kashiwazaki H, Hassan NM, Hamada J, Moriuchi T, Yamazaki Y, Tei K, Totsuka Y, Inoue N (2008) Gene expression profile changes correlated with lymph node metastasis in oral squamous cell carcinoma. Odontology 96(1):38–43PubMedCrossRefGoogle Scholar
  63. Katayama H, Okabe N, Kano T, Yaoita H (1984) Granulation tissue that developed after a minor trauma in a psoriatic patient on long-term etretinate therapy. J Dermatol 17(3):187–190Google Scholar
  64. Kato K, Hara A, Kuno T, Kitaori N, Huilan Z, Mori H, Toida M, Shibata T (2005) Matrix metalloproteinases 2 and 9 in oral squamous cell carcinomas: manifestation and localization of their activity. J Cancer Res Clin Oncol 131(6):340–346PubMedCrossRefGoogle Scholar
  65. Kikuchi T, Daigo Y, Katagiri T, Tsunoda T, Okada K, Kakiuchi S, Zembutsu H, Furukawa Y, Kawamura M, Kobayashi K et al (2003) Expression profiles of non-small cell lung cancers on cDNA microarrays: identification of genes for prediction of lymph-node metastasis and sensitivity to anti-cancer drugs. Oncogene 22(14):2192–2205PubMedCrossRefGoogle Scholar
  66. Kim SH, Cho NH, Kim K, Lee JS, Koo BS, Kim JH, Chang JH, Choi EC (2006) Correlations of oral tongue cancer invasion with matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) expression. J Surg Oncol 93(4):330–337PubMedCrossRefGoogle Scholar
  67. Knaut H, Werz C, Geisler R, Nusslein-Volhard C (2003) A zebrafish homologue of the chemokine receptor CXCR4 is a germ-cell guidance receptor. Nature 421(6920):279–282PubMedCrossRefGoogle Scholar
  68. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68(4):820–823PubMedCrossRefGoogle Scholar
  69. Knudson AG (1996) Hereditary cancer: two hits revisited. J Cancer Res Clin Oncol 122(3):135–140PubMedCrossRefGoogle Scholar
  70. Kondoh N, Ishikawa T, Ohkura S, Arai M, Hada A, Yamazaki Y, Kitagawa Y, Shindoh M, Takahashi M, Ando T et al (2008) Gene expression signatures that classify the mode of invasion of primary oral squamous cell carcinomas. Mol Carcinog 47(10):744–756PubMedCrossRefGoogle Scholar
  71. Kudo Y, Ogawa I, Kitajima S, Kitagawa M, Kawai H, Gaffney PM, Miyauchi M, Takata T (2006) Periostin promotes invasion and anchorage-independent growth in the metastatic process of head and neck cancer. Cancer Res 66(14):6928–6935PubMedCrossRefGoogle Scholar
  72. Kurahara S, Shinohara M, Ikebe T, Nakamura S, Beppu M, Hiraki A, Takeuchi H, Shirasuna K (1999) Expression of MMPS, MT-MMP, and TIMPs in squamous cell carcinoma of the oral cavity: correlations with tumor invasion and metastasis. Head Neck 21(7):627–638PubMedCrossRefGoogle Scholar
  73. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921PubMedCrossRefGoogle Scholar
  74. Lee EJ, Kim SH, Kwark YE, Kim J (2006) Heterogeneous nuclear ribonuclear protein C is increased in the celecoxib-induced growth inhibition of human oral squamous cell carcinoma. Exp Mol Med 38(3):203–209PubMedGoogle Scholar
  75. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115(7):787–798PubMedCrossRefGoogle Scholar
  76. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20PubMedCrossRefGoogle Scholar
  77. Li X, Wang E, Zhao YD, Ren JQ, Jin P, Yao KT, Marincola FM (2006) Chromosomal imbalances in nasopharyngeal carcinoma: a meta-analysis of comparative genomic hybridization results. J Transl Med 4:4PubMedCrossRefGoogle Scholar
  78. Lieberfarb ME, Lin M, Lechpammer M, Li C, Tanenbaum DM, Febbo PG, Wright RL, Shim J, Kantoff PW, Loda M et al (2003) Genome-wide loss of heterozygosity analysis from laser capture microdissected prostate cancer using single nucleotide polymorphic allele (SNP) arrays and a novel bioinformatics platform dChipSNP. Cancer Res 63(16):4781–4785PubMedGoogle Scholar
  79. Lin SC, Chung MY, Huang JW, Shieh TM, Liu CJ, Chang KW (2004) Correlation between functional genotypes in the matrix metalloproteinases-1 promoter and risk of oral squamous cell carcinomas. J Oral Pathol Med 33(6):323–326PubMedCrossRefGoogle Scholar
  80. Lindblad-Toh K, Tanenbaum DM, Daly MJ, Winchester E, Lui WO, Villapakkam A, Stanton SE, Larsson C, Hudson TJ, Johnson BE et al (2000) Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays. Nat Biotechnol 18(9):1001–1005PubMedCrossRefGoogle Scholar
  81. Lisitsyn N, Wigler M (1993) Cloning the differences between two complex genomes. Science 259(5097):946–951PubMedCrossRefGoogle Scholar
  82. Liyanage M, Coleman A, du Manoir S, Veldman T, McCormack S, Dickson RB, Barlow C, Wynshaw-Boris A, Janz S, Wienberg J et al (1996) Multicolour spectral karyotyping of mouse chromosomes. Nat Genet 14(3):312–315PubMedCrossRefGoogle Scholar
  83. Lucito R, Healy J, Alexander J, Reiner A, Esposito D, Chi M, Rodgers L, Brady A, Sebat J, Troge J et al (2003) Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res 13(10):2291–2305PubMedCrossRefGoogle Scholar
  84. Lyons AJ, Jones J (2007) Cell adhesion molecules, the extracellular matrix and oral squamous carcinoma. Int J Oral Maxillofacial Surg 36(8):671–679CrossRefGoogle Scholar
  85. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 95(16):9448–9453PubMedCrossRefGoogle Scholar
  86. Maeda G, Chiba T, Okazaki M, Satoh T, Taya Y, Aoba T, Kato K, Kawashiri S, Imai K (2005) Expression of SIP1 in oral squamous cell carcinomas: implications for E-cadherin expression and tumor progression. Int J Oncol 27(6):1535–1541PubMedGoogle Scholar
  87. Mantripragada KK, Buckley PG, de Stahl TD, Dumanski JP (2004) Genomic microarrays in the spotlight. Trends Genet 20(2):87–94PubMedCrossRefGoogle Scholar
  88. Matsumura H, Kruger DH, Kahl G, Terauchi R (2008) SuperSAGE: a modern platform for genome-wide quantitative transcript profiling. Curr Pharm Biotechnol 9(5):368–374PubMedCrossRefGoogle Scholar
  89. McGrath KE, Koniski AD, Maltby KM, McGann JK, Palis J (1999) Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. Dev Biol 213(2):442–456PubMedCrossRefGoogle Scholar
  90. Miyagi M, Rao KC (2007) Proteolytic 18O – labeling strategies for quantitative proteomics. Mass Spectrom Rev 26(1):121–136PubMedCrossRefGoogle Scholar
  91. Miyazaki Y, Hara A, Kato K, Oyama T, Yamada Y, Mori H, Shibata T (2008) The effect of hypoxic microenvironment on matrix metalloproteinase expression in xenografts of human oral squamous cell carcinoma. Int J Oncol 232(1):145–151Google Scholar
  92. Mizuno M, Yamamoto K, Sakamoto S, Mori T, Harigaya T, Nagasawa H (1994) Normal and neoplastic mammary gland growth in MMTV/TGF alpha transgenic mice. In Vivo 8(3):263–270PubMedGoogle Scholar
  93. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410(6824):50–56PubMedCrossRefGoogle Scholar
  94. Nagata M, Fujita H, Ida H, Hoshina H, Inoue T, Seki Y, Ohnishi M, Ohyama T, Shingaki S, Kaji M et al (2003) Identification of potential biomarkers of lymph node metastasis in oral squamous cell carcinoma by cDNA microarray analysis. Int J Cancer 106(5):683–689PubMedCrossRefGoogle Scholar
  95. Nakamura K, Ozaki N, Yamada T, Hata T, Sugimoto S, Hikino H, Kanazawa A, Tokuka A, Nagaoka S (2005) Evaluation of prognostic significance in extracapsular spread of lymph node metastasis in patients with gastric cancer. Surgery 137(5):511–517PubMedCrossRefGoogle Scholar
  96. Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1(2):155–161PubMedCrossRefGoogle Scholar
  97. Nelson PT, Baldwin DA, Kloosterman WP, Kauppinen S, Plasterk RH, Mourelatos Z (2006) RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA 12(2):187–191PubMedCrossRefGoogle Scholar
  98. Oliveira-Neto HH, Silva ET, Leles CR, Mendonca EF, Alencar Rde C, Silva TA, Batista AC (2008) Involvement of CXCL12 and CXCR4 in lymph node metastases and development of oral squamous cell carcinomas. Tumour Biol 29(4):262–271PubMedCrossRefGoogle Scholar
  99. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386PubMedCrossRefGoogle Scholar
  100. Onoue T, Uchida D, Begum NM, Tomizuka Y, Yoshida H, Sato M (2006) Epithelial-mesenchymal transition induced by the stromal cell-derived factor-1/CXCR4 system in oral squamous cell carcinoma cells. Int J Oncol 29(5):1133–1138PubMedGoogle Scholar
  101. Oral cancer (2008) American Cancer Society, Atlanta. http://wwwcancerorg/downloads/PRO/OralCancerpdf
  102. Pappin DJ, Hojrup P, Bleasby AJ (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol 3(6):327–332PubMedCrossRefGoogle Scholar
  103. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55(2):74–108PubMedCrossRefGoogle Scholar
  104. Patel BP, Shah PM, Rawal UM, Desai AA, Shah SV, Rawal RM, Patel PS (2005) Activation of MMP-2 and MMP-9 in patients with oral squamous cell carcinoma. J Surg Oncol 90(2):81–88PubMedCrossRefGoogle Scholar
  105. Patel V, Hood BL, Molinolo AA, Lee NH, Conrads TP, Braisted JC, Krizman DB, Veenstra TD, Gutkind JS (2008) Proteomic analysis of laser-captured paraffin-embedded tissues: a molecular portrait of head and neck cancer progression. Clin Cancer Res 14(4):1002–1014PubMedCrossRefGoogle Scholar
  106. Pinkel D, Albertson DG (2005a) Array comparative genomic hybridization and its applications in cancer. Nat Genet 37(Suppl):S11–S17PubMedCrossRefGoogle Scholar
  107. Pinkel D, Albertson DG (2005b) Comparative genomic hybridization. Annu Rev Genomics Hum Genet 6:331–354PubMedCrossRefGoogle Scholar
  108. Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo WL, Chen C, Zhai Y et al (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20(2):207–211PubMedCrossRefGoogle Scholar
  109. Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Williams CF, Jeffrey SS, Botstein D, Brown PO (1999) Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 23(1):41–46PubMedCrossRefGoogle Scholar
  110. Pyo SW, Hashimoto M, Kim YS, Kim CH, Lee SH, Johnson KR, Wheelock MJ, Park JU (2007) Expression of E-cadherin, P-cadherin and N-cadherin in oral squamous cell carcinoma: correlation with the clinicopathologic features and patient outcome. J Craniomaxillofac Surg 35(1):1–9PubMedGoogle Scholar
  111. Ralhan R, Desouza LV, Matta A, Chandra Tripathi S, Ghanny S, Dattagupta S, Thakar A, Chauhan SS, Siu KW (2009) iTRAQ-multidimensional liquid chromatography and tandem mass spectrometry-based identification of potential biomarkers of oral epithelial dysplasia and novel networks between inflammation and premalignancy. J Proteome Res 8(1):300–309PubMedCrossRefGoogle Scholar
  112. Rehimi R, Khalida N, Yusuf F, Dai F, Morosan-Puopolo G, Brand-Saberi B (2008) Stromal-derived factor-1 (SDF-1) expression during early chick development. Int J Dev Biol 52(1):87–92PubMedCrossRefGoogle Scholar
  113. Roepman P, Wessels LF, Kettelarij N, Kemmeren P, Miles AJ, Lijnzaad P, Tilanus MG, Koole R, Hordijk GJ, van der Vliet PC et al (2005) An expression profile for diagnosis of lymph node metastases from primary head and neck squamous cell carcinomas. Nat Genet 37(2):182–186PubMedCrossRefGoogle Scholar
  114. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169PubMedCrossRefGoogle Scholar
  115. Roy S, Patel D, Khanna S, Gordillo GM, Biswas S, Friedman A, Sen CK (2007) ­Transcriptome-wide analysis of blood vessels laser captured from human skin and chronic wound-edge tissue. Proc Natl Acad Sci USA 104(36):14472–14477PubMedCrossRefGoogle Scholar
  116. Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5(1):4–15PubMedCrossRefGoogle Scholar
  117. Schrock E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA, Ning Y, Ledbetter DH, Bar-Am I, Soenksen D et al (1996) Multicolor spectral karyotyping of human chromosomes. Science 273(5274):494–497PubMedCrossRefGoogle Scholar
  118. Seetoo DQ, Crowe PJ, Russell PJ, Yang JL (2003) Quantitative expression of protein markers of plasminogen activation system in prognosis of colorectal cancer. J Surg Oncol 82(3):184–193PubMedCrossRefGoogle Scholar
  119. Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G, Wells W, Kauppinen S, Cole CN (2007) Altered microRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 67(24):11612–11620PubMedCrossRefGoogle Scholar
  120. Shariat SF, Roehrborn CG, McConnell JD, Park S, Alam N, Wheeler TM, Slawin KM (2007) Association of the circulating levels of the urokinase system of plasminogen activation with the presence of prostate cancer and invasion, progression, and metastasis. J Clin Oncol 25(4):349–355PubMedCrossRefGoogle Scholar
  121. Shi Z, Stack MS (2007) Urinary-type plasminogen activator (uPA) and its receptor (uPAR) in squamous cell carcinoma of the oral cavity. Biochem J 407(2):153–159PubMedCrossRefGoogle Scholar
  122. So AP, Turner RF, Haynes CA (2004) Increasing the efficiency of SAGE adaptor ligation by directed ligation chemistry. Nucleic Acids Res 32(12):e96PubMedCrossRefGoogle Scholar
  123. Speicher MR, Gwyn Ballard S, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12(4):368–375PubMedCrossRefGoogle Scholar
  124. Stenvang J, Silahtaroglu AN, Lindow M, Elmen J, Kauppinen S (2008) The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin Cancer Biol 18(2):89–102PubMedCrossRefGoogle Scholar
  125. Sun L, Diamond ME, Ottaviano AJ, Joseph MJ, Ananthanarayan V, Munshi HG (2008) Transforming growth factor-beta 1 promotes matrix metalloproteinase-9-mediated oral cancer invasion through snail expression. Mol Cancer Res 6(1):10–20PubMedCrossRefGoogle Scholar
  126. Sung FL, Pang RT, Ma BB, Lee MM, Chow SM, Poon TC, Chan AT (2006) Pharmacoproteomics study of cetuximab in nasopharyngeal carcinoma. J Proteome Res 5(12):3260–3267PubMedCrossRefGoogle Scholar
  127. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, Kitamura Y, Matsushima K, Yoshida N, Nishikawa S et al (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393(6685):591–594PubMedCrossRefGoogle Scholar
  128. Takayama S, Hatori M, Kurihara Y, Kinugasa Y, Shirota T, Shintani S (2009) Inhibition of TGF-beta1 suppresses motility and invasiveness of oral squamous cell carcinoma cell lines via modulation of integrins and down-regulation of matrix-metalloproteinases. Oncol Rep 21(1):205–210PubMedGoogle Scholar
  129. Takkunen M, Ainola M, Vainionpaa N, Grenman R, Patarroyo M, Garcia de Herreros A, Konttinen YT, Virtanen I (2008) Epithelial-mesenchymal transition downregulates laminin alpha5 chain and upregulates laminin alpha4 chain in oral squamous carcinoma cells. Histochem Cell Biol 130(3):509–525PubMedCrossRefGoogle Scholar
  130. Torres TT, Metta M, Ottenwalder B, Schlotterer C (2008) Gene expression profiling by massively parallel sequencing. Genome Res 18(1):172–177PubMedCrossRefGoogle Scholar
  131. Uchida D, Begum NM, Almofti A, Nakashiro K, Kawamata H, Tateishi Y, Hamakawa H, Yoshida H, Sato M (2003) Possible role of stromal-cell-derived factor-1/CXCR4 signaling on lymph node metastasis of oral squamous cell carcinoma. Experimen Cell Res 290(2):289–302CrossRefGoogle Scholar
  132. Uchida D, Begum NM, Tomizuka Y, Bando T, Almofti A, Yoshida H, Sato M (2004) Acquisition of lymph node, but not distant metastatic potentials, by the overexpression of CXCR4 in human oral squamous cell carcinoma. Lab Inv J Tech Meth Pathol 84(12):1538–1546Google Scholar
  133. Uchida D, Onoue T, Tomizuka Y, Begum NM, Miwa Y, Yoshida H, Sato M (2007) Involvement of an autocrine stromal cell derived factor-1/CXCR4 system on the distant metastasis of human oral squamous cell carcinoma. Mol Cancer Res 5(7):685–694PubMedCrossRefGoogle Scholar
  134. Venturini L, Battmer K, Castoldi M, Schultheis B, Hochhaus A, Muckenthaler MU, Ganser A, Eder M, Scherr M (2007) Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood 109(10):4399–4405PubMedCrossRefGoogle Scholar
  135. Vogelstein B, Fearon ER, Kern SE, Hamilton SR, Preisinger AC, White R (1989) Alleotype of colorectal carcinomas. Science 244:201–211CrossRefGoogle Scholar
  136. Volm M, Mattern J, Koomagi R (1999) Relationship of urokinase and urokinase receptor in ­non-small cell lung cancer to proliferation, angiogenesis, metastasis and patient survival. Oncol Rep 6(3):611–615PubMedGoogle Scholar
  137. Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J et al (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280(5366):1077–1082PubMedCrossRefGoogle Scholar
  138. Wang TL, Maierhofer C, Speicher MR, Lengauer C, Vogelstein B, Kinzler KW, Velculescu VE (2002) Digital karyotyping. Proc Natl Acad Sci USA 99(25):16156–16161PubMedCrossRefGoogle Scholar
  139. Wang ZC, Lin M, Wei LJ, Li C, Miron A, Lodeiro G, Harris L, Ramaswamy S, Tanenbaum DM, Meyerson M et al (2004) Loss of heterozygosity and its correlation with expression profiles in subclasses of invasive breast cancers. Cancer Res 64(1):64–71PubMedCrossRefGoogle Scholar
  140. Wang Z, Jiang L, Huang C, Li Z, Chen L, Gou L, Chen P, Tong A, Tang M, Gao F et al (2008) Comparative proteomics approach to screening of potential diagnostic and therapeutic targets for oral squamous cell carcinoma. Mol Cell Proteomics 7(9):1639–1650PubMedCrossRefGoogle Scholar
  141. Weng LP, Wu CC, Hsu BL, Chi LM, Liang Y, Tseng CP, Hsieh LL, Yu JS (2008) Secretome-based identification of Mac-2 binding protein as a potential oral cancer marker involved in cell growth and motility. J Proteome Res 7(9):3765–3775PubMedCrossRefGoogle Scholar
  142. Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES, Kellis M (2005) Systematic discovery of regulatory motifs in human promoters and 3’ UTRs by comparison of several mammals. Nature 434(7031):338–345PubMedCrossRefGoogle Scholar
  143. Yamamoto T, Kamata N, Kawano H, Shimizu S, Kuroki T, Toyoshima K, Rikimaru K, Nomura N, Ishizaki R, Pastan I et al (1986) High incidence of amplification of the epidermal growth factor receptor gene in human squamous carcinoma cell lines. Cancer Res 46(1):414–416PubMedGoogle Scholar
  144. Yin JQ, Zhao RC, Morris KV (2008) Profiling microRNA expression with microarrays. Trends Biotechnol 26(2):70–76PubMedCrossRefGoogle Scholar
  145. Yu T, Ye H, Sun W, Li KC, Chen Z, Jacobs S, Bailey DK, Wong DT, Zhou X (2007) A forward-backward fragment assembling algorithm for the identification of genomic amplification and deletion breakpoints using high-density single nucleotide polymorphism (SNP) array. BMC Bioinform 8(1):145CrossRefGoogle Scholar
  146. Zhao X, Li C, Paez JG, Chin K, Janne PA, Chen TH, Girard L, Minna J, Christiani D, Leo C et al (2004) An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res 64(9):3060–3071PubMedCrossRefGoogle Scholar
  147. Zhao X, Weir BA, LaFramboise T, Lin M, Beroukhim R, Garraway L, Beheshti J, Lee JC, Naoki K, Richards WG et al (2005) Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis. Cancer Res 65(13):5561–5570PubMedCrossRefGoogle Scholar
  148. Zhou X, Jordan RCK, Mok S, Birrer MJ, Wong DT (2004a) DNA copy number abnormality of oral squamous cell carcinoma detected by cDNA array-based CGH. Cancer Genet Cytogenet 151(1):90–92PubMedCrossRefGoogle Scholar
  149. Zhou X, Li C, Mok SC, Chen Z, Wong DTW (2004b) Whole genome loss of heterozygosity profiling on oral squamous cell carcinoma by high-density single nucleotide polymorphic allele (SNP) array. Cancer Genet Cytogenet 151(1):82–84PubMedCrossRefGoogle Scholar
  150. Zhou X, Mok SC, Chen Z, Li Y, Wong DT (2004c) Concurrent analysis of loss of heterozygosity (LOH) and copy number abnormality (CNA) for oral premalignancy progression using the Affymetrix 10 K SNP mapping array. Hum Genet 115(4):327–330PubMedCrossRefGoogle Scholar
  151. Zhou X, Temam S, Oh M, Pungpravat N, Huang BL, Mao L, Wong DT (2006) Global expression-based classification of lymph node metastasis and extracapsular spread of oral tongue squamous cell carcinoma. Neoplasia 8(11):925–932PubMedCrossRefGoogle Scholar
  152. Ziober AF, Patel KR, Alawi F, Gimotty P, Weber RS, Feldman MM, Chalian AA, Weinstein GS, Hunt J, Ziober BL (2006) Identification of a gene signature for rapid screening of oral squamous cell carcinoma. Clin Cancer Res 12(20 Pt 1):5960–5971PubMedCrossRefGoogle Scholar
  153. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393(6685):595–599PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Center for Molecular Biology of Oral Diseases, College of DentistryUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations