p63 in Squamous Differentiation and Cancer

  • Dennis R. Roop
  • Maranke I. Koster


Genes that are important for normal development and differentiation of tissues are often deregulated in cancers that originate from that tissue. An example of a gene that is both required for normal skin development and differentiation, and which is deregulated during tumorigenesis is the transcription factor p63. During epidermal development and in postnatal epidermis, p63 controls various processes including basement membrane formation, keratinocyte adhesion, terminal differentiation, and barrier formation. When p63 expression is deregulated, these processes do not occur normally, resulting in oncogenic transformation. In this chapter, we will review the role of p63 in normal epidermal development and differentiation, as well as the role of deregulated p63 expression in skin cancer.


Transactivation Domain Ectodermal Dysplasia Epidermal Differentiation Epidermal Development Basement Membrane Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adorno M, Cordenonsi M et al (2009) A mutant-p53/smad complex opposes p63 to empower TGFβ-induced metastasis. Cell 137:87–98PubMedCrossRefGoogle Scholar
  2. Barbieri CE, Tang LJ, Brown KA, Pietenpol JA (2006) Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Res 66:7589–7597PubMedCrossRefGoogle Scholar
  3. Beaudry VG, Pathak N, Koster MI, Attardi LD (2009) Differential PERP regulation by TP63 mutants provides insight into AEC pathogenesis. Am J Med Genet A 149A(9):1952–1957PubMedCrossRefGoogle Scholar
  4. Beretta C, Chiarelli A, Testoni B, Mantovani R, Guerrini L (2005) Regulation of the cyclin-dependent kinase inhibitor p57Kip2 expression by p63. Cell Cycle 4:1625–1631PubMedCrossRefGoogle Scholar
  5. Bian J, Sun Y (1997) p53CP, a putative p53 competing protein that specifically binds to the consensus p53 DNA binding sites: a third member of the p53 family? Proc Natl Acad Sci USA 94:14753–14758PubMedCrossRefGoogle Scholar
  6. Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP, Saville MK, Lane DP (2005) p53 isoforms can regulate p53 transcriptional activity. Genes Dev 19:2122–2137PubMedCrossRefGoogle Scholar
  7. Candi E, Dinsdale D, Rufini A, Salomoni P, Knight RA, Mueller M, Krammer PH, Melino G (2007) TAp63 and ΔNp63 in cancer and epidermal development. Cell Cycle 6:274–285PubMedGoogle Scholar
  8. Candi E, Rufini A, Terrinoni A, Dinsdale D, Ranalli M, Paradisi A, De Laurenzi V, Spagnoli LG, Catani MV, Ramadan S, Knight RA, Melino G (2006) Differential roles of p63 isoforms in epidermal development: selective genetic complementation in p63 null mice. Cell Death Differ 13:1037–1047PubMedCrossRefGoogle Scholar
  9. Carroll DK, Carroll JS, Leong CO, Cheng F, Brown M, Mills A, Brugge JS, Ellisen LW (2006) p63 regulates an adhesion programme and cell survival in epithelial cells. Nat Cell Biol 8:551–561PubMedCrossRefGoogle Scholar
  10. Caulin C, Nguyen T, Lang GA, Goepfert TM, Brinkley BR, Cai WW, Lozano G, Roop DR (2007) An inducible mouse model for skin cancer reveals distinct roles for gain- and loss-of-function p53 mutations. J Clin Invest 117:1893–1901PubMedCrossRefGoogle Scholar
  11. Celli J, Duijf P, Hamel BC et al (1999) Heterozygous germline mutations in the p53 homolog p63 are the cause of EEC syndrome. Cell 99:143–153PubMedCrossRefGoogle Scholar
  12. Chene P (2001) The role of tetramerization in p53 function. Oncogene 20:2611–2617PubMedCrossRefGoogle Scholar
  13. Cheng X, Koch PJ (2004) In vivo function of desmosomes. J Dermatol 31:171–187PubMedGoogle Scholar
  14. Chuong CM (1998) Molecular basis of epithelial appendage morphogenesis. R.G. Landes Company, AustinGoogle Scholar
  15. Davison TS, Vagner C, Kaghad M, Ayed A, Caput D, Arrowsmith CH (1999) p73 and p63 are homotetramers capable of weak heterotypic interactions with each other but not with p53. J Biol Chem 274:18709–18714PubMedCrossRefGoogle Scholar
  16. De Laurenzi V, Rossi A, Terrinoni A, Barcaroli D, Levrero M, Costanzo A, Knight RA, Guerrieri P, Melino G (2000) p63 and p73 transactivate differentiation gene promoters in human keratinocytes. Biochem Biophys Res Commun 273:342–346PubMedCrossRefGoogle Scholar
  17. DeLeo AB, Jay G, Appella E, Dubois GC, Law LW, Old LJ (1979) Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA 76:2420–2424PubMedCrossRefGoogle Scholar
  18. Dohn M, Zhang S, Chen X (2001) p63α and ΔNp63α can induce cell cycle arrest and apoptosis and differentially regulate p53 target genes. Oncogene 20:3193–3205PubMedCrossRefGoogle Scholar
  19. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221PubMedCrossRefGoogle Scholar
  20. el Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B (1992) Definition of a consensus binding site for p53. Nat Genet 1:45–49PubMedCrossRefGoogle Scholar
  21. Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D, Yang A, McKeon F, Jacks T (2005) Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor ­suppressor functions for the p53 family. Cancer Cell 7:363–373PubMedCrossRefGoogle Scholar
  22. Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F, Jacks T (2002) p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416:560–564PubMedCrossRefGoogle Scholar
  23. Forbes PD (1996) Relevance of animal models of photocarcinogenesis to humans. Photochem Photobiol 63:357–362PubMedCrossRefGoogle Scholar
  24. Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C (2001) A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 21:1874–1887PubMedCrossRefGoogle Scholar
  25. Gebhart E, Liehr T (2000) Patterns of genomic imbalances in human solid tumors (Review). Int J Oncol 16:383–399PubMedGoogle Scholar
  26. Geddert H, Kiel S, Heep HJ, Gabbert HE, Sarbia M (2003) The role of p63 and deltaNp63 (p40) protein expression and gene amplification in esophageal carcinogenesis. Hum Pathol 34:850–856PubMedCrossRefGoogle Scholar
  27. Gressner O, Schilling T, Lorenz K et al (2005) TAp63α induces apoptosis by activating signaling via death receptors and mitochondria. EMBO J 24:2458–2471PubMedCrossRefGoogle Scholar
  28. Gu X, Lundqvist EN, Coates PJ, Thurfjell N, Wettersand E, Nylander K (2006) Dysregulation of TAp63 mRNA and protein levels in psoriasis. J Invest Dermatol 126:137–141PubMedCrossRefGoogle Scholar
  29. Hansen TM, Rossi M, Roperch JP, Ansell K, Simpson K, Taylor D, Mathon N, Knight RA, Melino G (2007) Itch inhibition regulates chemosensitivity in vitro. Biochem Biophys Res Commun 361:33–36PubMedCrossRefGoogle Scholar
  30. Harms KL, Chen X (2006) The functional domains in p53 family proteins exhibit both common and distinct properties. Cell Death Differ 13:890–897PubMedCrossRefGoogle Scholar
  31. Helton ES, Zhang J, Chen X (2007) The proline-rich domain in p63 is necessary for the transcriptional and apoptosis-inducing activities of TAp63. Oncogene 27:2843–2850PubMedCrossRefGoogle Scholar
  32. Helton ES, Zhu J, Chen X (2006) The unique NH2-terminally deleted (ΔN) residues, the PXXP motif, and the PPXY motif are required for the transcriptional activity of the ΔN variant of p63. J Biol Chem 281:2533–2542PubMedCrossRefGoogle Scholar
  33. Hibi K, Trink B, Patturajan M, Westra WH, Caballero OL, Hill DE, Ratovitski EA, Jen J, Sidransky D (2000) AIS is an oncogene amplified in squamous cell carcinoma. Proc Natl Acad Sci USA 97:5462–5467PubMedCrossRefGoogle Scholar
  34. Higashikawa K, Yoneda S, Tobiume K, Taki M, Shigeishi H, Kamata N (2007) Snail-induced down-regulation of DeltaNp63alpha acquires invasive phenotype of human squamous cell carcinoma. Cancer Res 67:9207–9213PubMedCrossRefGoogle Scholar
  35. Hinds PW, Weinberg RA (1994) Tumor suppressor genes. Curr Opin Genet Dev 4:135–141PubMedCrossRefGoogle Scholar
  36. Ihrie RA, Marques MR, Nguyen BT, Horner JS, Papazoglu C, Bronson RT, Mills AA, Attardi LD (2005) Perp is a p63-regulated gene essential for epithelial integrity. Cell 120:843–856PubMedCrossRefGoogle Scholar
  37. Johnson TM, Rowe DE, Nelson BR, Swanson NA (1992) Squamous cell carcinoma of the skin (excluding lip and oral mucosa). J Am Acad Dermatol 26:467–484PubMedCrossRefGoogle Scholar
  38. Kaghad M, Bonnet H, Yang A et al (1997) Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90:809–819PubMedCrossRefGoogle Scholar
  39. Katoh I, Aisaki KI, Kurata SI, Ikawa S, Ikawa Y (2000) p51A (TAp63gamma), a p53 homolog, accumulates in response to DNA damage for cell regulation. Oncogene 19:3126–3130PubMedCrossRefGoogle Scholar
  40. Keyes WM, Vogel H, Koster MI, Guo X, Qi Y, Petherbridge KM, Roop DR, Bradley A, Mills AA (2006) p63 heterozygous mutant mice are not prone to spontaneous or chemically induced tumors. Proc Natl Acad Sci 103:8435–8440PubMedCrossRefGoogle Scholar
  41. Kim S, Choi IF, Quante JR, Zhang L, Roop DR, Koster MI (2009) p63 directly induces expression of Alox12, a regulator of epidermal barrier formation. Exp Dermatol 18(12):1016–1021PubMedCrossRefGoogle Scholar
  42. King KE, Ponnamperuma RM, Gerdes MJ, Tokino T, Yamashita T, Baker CC, Weinberg WC (2006) Unique domain functions of p63 isotypes that differentially regulate distinct aspects of epidermal homeostasis. Carcinogenesis 27:53–63PubMedCrossRefGoogle Scholar
  43. King KE, Ponnamperuma RM, Yamashita T, Tokino T, Lee LA, Young MF, Weinberg WC (2003) ΔNp63α functions as both a positive and a negative transcriptional regulator and blocks in vitro differentiation of murine keratinocytes. Oncogene 22:3635–3644PubMedCrossRefGoogle Scholar
  44. King KE, Ponnamperuma RM, Allen C, Lu H, Duggal P, Chen Z, Van Waes C, Weinberg WC (2008) The p53 Homologue ΔNp63α Interacts with the Nuclear Factor-κB Pathway to Modulate Epithelial Cell Growth. Cancer Res 68:5122–5131PubMedCrossRefGoogle Scholar
  45. Kirschner RD, Sanger K, Muller GA, Engeland K (2008) Transcriptional activation of the tumor suppressor and differentiation gene S100A2 by a novel p63-binding site. Nucleic Acids Res 36:2969–2980PubMedCrossRefGoogle Scholar
  46. Koster MI, Kim S, Mills AA, DeMayo FJ, Roop DR (2004) p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev 18:126–131PubMedCrossRefGoogle Scholar
  47. Koster MI, Marinari B, Payne AS, Kantaputra PN, Costanzo A, Roop DR (2009) ΔNp63 knockdown mice: a mouse model for AEC syndrome. Am J Med Genet 149A(9):1942–1947Google Scholar
  48. Koster MI, Dai D, Marinari B, Sano Y, Costanzo A, Karin M, Roop DR (2007) p63 induces key target genes required for epidermal morphogenesis. Proc Natl Acad Sci USA 104:3255–3260PubMedCrossRefGoogle Scholar
  49. Koster MI, Lu SL, White LD, Wang XJ, Roop DR (2006) Reactivation of developmentally expressed p63 isoforms predisposes to tumor development and progression. Cancer Res 66:3981–3986PubMedCrossRefGoogle Scholar
  50. Koster MI, Roop DR (2008) Sorting out the p63 signaling network. J Invest Dermatol 128:1617–1619PubMedCrossRefGoogle Scholar
  51. Kurata Si, Okuyama T, Osada M, Watanabe T, Tomimori Y, Sato S, Iwai A, Tsuji T, Ikawa Y, Katoh I (2004) p51/p63 Controls subunit α3 of the major epidermis integrin anchoring the stem cells to the niche. J Biol Chem 279:50069–50077PubMedCrossRefGoogle Scholar
  52. Lang GA, Iwakuma T, Suh YA et al (2004) Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119:861–872PubMedCrossRefGoogle Scholar
  53. Larsen M, Artym VV, Green JA, Yamada KM (2006) The matrix reorganized: extracellular matrix remodeling and integrin signaling. Curr Opin Cell Biol 18:463–471PubMedCrossRefGoogle Scholar
  54. Laurikkala J, Mikkola ML, James M, Tummers M, Mills AA, Thesleff I (2006) p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development 133:1553–1563PubMedCrossRefGoogle Scholar
  55. Lee Ho, Lee JH, Choi E, Seol JY, Yun Y, Lee H (2006) A dominant negative form of p63 inhibits apoptosis in a p53-independent manner. Biochem Biophys Res Commun 344:166–172PubMedCrossRefGoogle Scholar
  56. Leiter U, Garbe C (2008) Epidemiology of melanoma and nonmelanoma skin cancer–the role of sunlight. Adv Exp Med Biol 624:89–103PubMedCrossRefGoogle Scholar
  57. Leong CO, Vidnovic N, Deyoung MP, Sgroi D, Ellisen LW (2007) The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest 117:1370–1380PubMedCrossRefGoogle Scholar
  58. Li Y, Zhou Z, Chen C (2008) WW domain-containing E3 ubiquitin protein ligase 1 targets p63 transcription factor for ubiquitin-mediated proteasomal degradation and regulates apoptosis. Cell Death Differ 15:1941–1951PubMedCrossRefGoogle Scholar
  59. Liefer KM, Koster MI, Wang XJ, Yang A, McKeon F, Roop DR (2000) Down-regulation of p63 is required for epidermal UV-B-induced apoptosis. Cancer Res 60:4016–4020PubMedGoogle Scholar
  60. Liu B, Xia X, Zhu F, Park E, Carbajal S, Kiguchi K, DiGiovanni J, Fischer SM, Hu Y (2008) IKKα is required to maintain skin homeostasis and prevent skin cancer. Cancer Cell 14:212–225PubMedCrossRefGoogle Scholar
  61. Liu G, Nozell S, Xiao H, Chen X (2004) ΔNp73β is active in transactivation and growth suppression. Mol Cell Biol 24:487–501PubMedCrossRefGoogle Scholar
  62. Liu Y, Kulesz-Martin MF (2006) Sliding into home: facilitated p53 search for targets by the basic DNA binding domain. Cell Death Differ 13:881–884PubMedCrossRefGoogle Scholar
  63. Lopardo T, Lo IN, Marinari B, Giustizieri ML, Cyr DG, Merlo G, Crosti F, Costanzo A, Guerrini L (2008) Claudin-1 is a p63 target gene with a crucial role in epithelial development. PLoS ONE 3:e2715PubMedCrossRefGoogle Scholar
  64. MacKie RM (2006) Long-term health risk to the skin of ultraviolet radiation. Prog Biophys Mol Biol 92:92–96PubMedCrossRefGoogle Scholar
  65. Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, Kassel J, Gryka MA, Bischoff FZ, Tainsky MA (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250:1233–1238PubMedCrossRefGoogle Scholar
  66. Marchbank A, Su LJ, Walsh P, DeGregori J, Penheiter K, Grayson TB, Dellavalle RP, Lee LA (2003) The CUSP ΔNp63α isoform of human p63 is downregulated by solar-simulated ultraviolet radiation. J Dermatol Sci 32:71–74PubMedCrossRefGoogle Scholar
  67. Marinari B, Ballaro C, Koster MI, Giustizieri ML, Moretti F, Crosti F, Papoutsaki M, Karin M, Alema S, Chimenti S, Roop DR, Costanzo A (2008) IKK[alpha] Is a p63 Transcriptional Target Involved in the Pathogenesis of Ectodermal Dysplasias. J Invest Dermatol 129:60–69PubMedCrossRefGoogle Scholar
  68. Martinez LA, Chen Y, Fischer SM, Conti CJ (1999) Coordinated changes in cell cycle machinery occur during keratinocyte terminal differentiation. Oncogene 18:397–406PubMedCrossRefGoogle Scholar
  69. Massion PP, Taflan PM, Jamshedur Rahman SM et al (2003) Significance of p63 amplification and overexpression in lung cancer development and prognosis. Cancer Res 63:7113–7121PubMedGoogle Scholar
  70. McGrath JA, Duijf PH, Doetsch V et al (2001) Hay-Wells syndrome is caused by heterozygous missense mutations in the SAM domain of p63. Hum Mol Genet 10:221–229PubMedCrossRefGoogle Scholar
  71. McGregor L, Makela V, Darling SM et al (2003) Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein. Nat Genet 34:203–208PubMedCrossRefGoogle Scholar
  72. McMillan JR, Akiyama M, Shimizu H (2003) Epidermal basement membrane zone components: ultrastructural distribution and molecular interactions. J Dermatol Sci 31:169–177PubMedCrossRefGoogle Scholar
  73. Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398:708–713PubMedCrossRefGoogle Scholar
  74. Mills AA (2006) p63: oncogene or tumor suppressor? Curr Opin Genet Dev 16:38–44PubMedCrossRefGoogle Scholar
  75. Murray-Zmijewski F, Lane DP, Bourdon JC (2006) p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ 13:962–972PubMedCrossRefGoogle Scholar
  76. Ogawa E, Okuyama R, Ikawa S, Nagoshi H, Egawa T, Kurihara A, Yabuki M, Tagami H, Obinata M, Aiba S (2007) p51/p63 inhibits ultraviolet B-induced apoptosis via Akt activation. Oncogene 27:848–856PubMedCrossRefGoogle Scholar
  77. Ogawa E, Okuyama R, Egawa T, Nagoshi H, Obinata M, Tagami H, Ikawa S, Aiba S (2008) p63/p51-induced onset of keratinocyte differentiation via the c-Jun N-terminal kinase pathway is counteracted by keratinocyte growth factor. J Biol Chem 283:34241–34249PubMedCrossRefGoogle Scholar
  78. Okada Y, Osada M, Kurata S, Sato S, Aisaki K, Kageyama Y, Kihara K, Ikawa Y, Katoh I (2002) p53 gene family p51(p63)-encoded, secondary transactivator p51B(TAp63α) occurs without forming an immunoprecipitable complex with MDM2, but responds to genotoxic stress by accumulation. Exp Cell Res 276:194–200PubMedCrossRefGoogle Scholar
  79. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT, Crowley D, Jacks T (2004) Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119:847–860PubMedCrossRefGoogle Scholar
  80. Oliveira LR, Ribeiro-Silva A, Zucoloto S (2007) Prognostic significance of p53 and p63 immunolocalisation in primary and matched lymph node metastasis in oral squamous cell carcinoma. Acta Histochem 109:388–396, 2007PubMedCrossRefGoogle Scholar
  81. Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P (2002) The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19:607–614PubMedCrossRefGoogle Scholar
  82. Ortt K, Sinha S (2006) Derivation of the consensus DNA-binding sequence for p63 reveals unique requirements that are distinct from p53. FEBS Lett 580:4544–4550PubMedCrossRefGoogle Scholar
  83. Osada M, Nagakawa Y, Park HL et al (2005a) p63-Specific Activation of the BPAG-1e Promoter. J Invest Dermatol 125:52–60PubMedCrossRefGoogle Scholar
  84. Osada M, Park HL, Nagakawa Y et al (2005b) Differential recognition of response elements determines target gene specificity for p53 and p63. Mol Cell Biol 25:6077–6089PubMedCrossRefGoogle Scholar
  85. Payne AS, Yan AC, Ilyas E et al (2005) Two novel TP63 mutations associated with the ankyloblepharon, ectodermal defects, and cleft lip and palate syndrome: a skin fragility phenotype. Arch Dermatol 141:1567–1573PubMedCrossRefGoogle Scholar
  86. Perez-Losada J, Wu D, Delrosario R, Balmain A, Mao JH (2005) p63 and p73 do not contribute to p53-mediated lymphoma suppressor activity in vivo. Oncogene 24:5521–5524PubMedCrossRefGoogle Scholar
  87. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28:622–629PubMedCrossRefGoogle Scholar
  88. Priolo M, Silengo M, Lerone M, Ravazzolo R (2000) Ectodermal dysplasias: not only ‘skin’ deep. Clin Genet 58:415–430PubMedCrossRefGoogle Scholar
  89. Radoja N, Guerrini L, Lo Iacono N, Merlo GR, Costanzo A, Weinberg WC, La Mantia G, Calabro V, Morasso MI (2007) Homeobox gene Dlx3 is regulated by p63 during ectoderm development: relevance in the pathogenesis of ectodermal dysplasias. Development 134:13–18PubMedCrossRefGoogle Scholar
  90. Reczek EE, Flores ER, Tsay AS, Attardi LD, Jacks T (2003) Multiple response elements and differential p53 binding control Perp expression during apoptosis. Mol Cancer Res 1:1048–1057PubMedGoogle Scholar
  91. Renan MJ (1993) How many mutations are required for tumorigenesis? Implications from human cancer data. Mol Carcinog 7:139–146PubMedCrossRefGoogle Scholar
  92. Rinne T, Brunner HG, van Bokhoven H (2007) p63-associated disorders. Cell Cycle 6:262–268PubMedGoogle Scholar
  93. Rocco JW, Leong CO, Kuperwasser N, Deyoung MP, Ellisen LW (2006) p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 9:45–56PubMedCrossRefGoogle Scholar
  94. Rossi M, Aqeilan RI, Neale M, Candi E, Salomoni P, Knight RA, Croce CM, Melino G (2006) The E3 ubiquitin ligase Itch controls the protein stability of p63. Proc Natl Acad Sci 103:12753–12758PubMedCrossRefGoogle Scholar
  95. Sayan BS, Sayan AE, Yang AL, Aqeilan RI, Candi E, Cohen GM, Knight RA, Croce CM, Melino G (2007) Cleavage of the transactivation-inhibitory domain of p63 by caspases enhances apoptosis. Proc Natl Acad Sci 104:10871–10876PubMedCrossRefGoogle Scholar
  96. Schultz J, Ponting CP, Hofmann K, Bork P (1997) SAM as a protein interaction domain involved in developmental regulation. Protein Sci 6:249–253PubMedCrossRefGoogle Scholar
  97. Serber Z, Lai HC, Yang A, Ou HD, Sigal MS, Kelly AE, Darimont BD, Duijf PH, van Bokhoven H, McKeon F, Dotsch V (2002) A C-terminal inhibitory domain controls the activity of p63 by an intramolecular mechanism. Mol Cell Biol 22:8601–8611PubMedCrossRefGoogle Scholar
  98. Shimomura Y, Wajid M, Shapiro L, Christiano AM (2008) P-cadherin is a p63 target gene with a crucial role in the developing human limb bud and hair follicle. Development 135:743–753PubMedCrossRefGoogle Scholar
  99. Siegfried E, Bree A, Fete M, Sybert VP (2005) Skin erosions and wound healing in ankyloblepharon-ectodermal defect-cleft lip and/or palate. Arch Dermatol 141:1591–1594PubMedCrossRefGoogle Scholar
  100. Smyth I, Scambler P (2005) The genetics of Fraser syndrome and the blebs mouse mutants. Hum Mol Genet 14(2):R269–R274PubMedCrossRefGoogle Scholar
  101. Testoni B, Mantovani R (2006) Mechanisms of transcriptional repression of cell-cycle G2/M promoters by p63. Nucleic Acids Res 34:928–938PubMedCrossRefGoogle Scholar
  102. Tonon G, Wong KK, Maulik G et al (2005) High-resolution genomic profiles of human lung cancer. Proc Natl Acad Sci U S A A102:9625–9630CrossRefGoogle Scholar
  103. Truong AB, Kretz M, Ridky TW, Kimmel R, Khavari PA (2006) p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev 20:3185–3197PubMedCrossRefGoogle Scholar
  104. Vrontou S, Petrou P, Meyer BI, Galanopoulos VK, Imai K, Yanagi M, Chowdhury K, Scambler PJ, Chalepakis G (2003) Fras1 deficiency results in cryptophthalmos, renal agenesis and blebbed phenotype in mice. Nat Genet 34:209–214PubMedCrossRefGoogle Scholar
  105. Westfall MD, Joyner AS, Barbieri CE, Livingstone M, Pietenpol JA (2005) Ultraviolet radiation induces phosphorylation and ubiquitin-mediated degradation of DeltaNp63alpha. Cell Cycle 4:710–716PubMedGoogle Scholar
  106. Westfall MD, Mays DJ, Sniezek JC, Pietenpol JA (2003) The ΔNp63α phosphoprotein binds the p21 and 14-3-3 sigma promoters in vivo and has transcriptional repressor activity that is reduced by Hay-Wells syndrome-derived mutations. Mol Cell Biol 23:2264–2276PubMedCrossRefGoogle Scholar
  107. Wu G, Nomoto S, Hoque MO et al (2003) αNp63α and TAp63α regulate transcription of genes with distinct biological functions in cancer and development. Cancer Res 63:2351–2357PubMedGoogle Scholar
  108. Yang A, Kaghad M, Caput D, McKeon F (2002) On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet 18:90–95PubMedCrossRefGoogle Scholar
  109. Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V, Andrews NC, Caput D, McKeon F (1998) p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 2:305–316PubMedCrossRefGoogle Scholar
  110. Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, Tabin C, Sharpe A, Caput D, Crum C, McKeon F (1999) p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398:714–718PubMedCrossRefGoogle Scholar
  111. Yang A, Walker N, Bronson R, Kaghad M, Oosterwegel M, Bonnin J, Vagner C, Bonnet H, Dikkes P, Sharpe A, McKeon F, Caput D (2000) p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404:99–103PubMedCrossRefGoogle Scholar
  112. Zangen R, Ratovitski E, Sidransky D (2005) ΔNp63α levels correlate with clinical tumor response to cisplatin. Cell Cycle 4:1313–1315PubMedGoogle Scholar
  113. Zeng X, Levine AJ, Lu H (1998) Non-p53 p53RE binding protein, a human transcription factor functionally analogous to P53. Proc Natl Acad Sci USA 95:6681–6686PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Dermatology, Charles C. Gates Center for Regenerative Medicine and Stem Cell BiologyUniversity of Colorado DenverAuroraUSA

Personalised recommendations