Cell Adhesion Molecules in Carcinoma Invasion and Metastasis

  • Barry L. Ziober
  • Joseph O. Humtsoe
  • Randall H. Kramer


The primary reason for treatment failure in patients with head and neck squamous cell carcinoma (HNSCC) is local tumor cell invasion. HNSCC invasion is a necessary component of metastasis where tumor cells infiltrate into adjacent tissues, degrading basement membranes and extracellular matrix (ECM), and ­disrupting tissue architecture. These adhesive interactions of integrins with their ECM ligands are important not only in physically modulating HNSCC migration and invasion, but also in regulating the pathways required for survival and continued tumor expansion. During tumor progression, tumor cells must overcome a hostile microenvironment that can include hypoxia, growth factor deprivation, and loss of adhesion to the ECM. A second class of receptors expressed in HNSCC, the cadherins, form intercellular adhesions and are also relevant to the invasive process. These cell–cell adhesions are responsible for forming stratifying cell layers, but also influence the differentiated state of the tumor cells, and tend to restrain invasion. In these epithelial tumors, cadherin engagement can promote cell survival by a process termed “synoikis” that involves the receptor tyrosine kinase, EGFR. The complex signaling pathways transduced by integrin and cadherin receptors are poorly understood but are known to coordinately regulate such diverse cellular processes as apoptosis, proliferation, and the invasive phenotype.


Squamous Cell Carcinoma Oral Squamous Cell Carcinoma Malignant Pleural Mesothelioma Bullous Pemphigoid Squamous Cell Carcinoma Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alt A, Ohba M, Li L, Gartsbein M, Belanger A, Denning MF, Kuroki T, Yuspa SH, Tennenbaum T (2001) Protein kinase Cdelta-mediated phosphorylation of alpha6beta4 is associated with reduced integrin localization to the hemidesmosome and decreased keratinocyte attachment. Cancer Res 61:4591–4598PubMedGoogle Scholar
  2. Alt-Holland A, Zhang W, Margulis A, Garlick JA (2005) Microenvironmental control of premalignant disease: the role of intercellular adhesion in the progression of squamous cell carcinoma. Semin Cancer Biol 15:84–96PubMedCrossRefGoogle Scholar
  3. Amano S, Scott IC et al (2000) Bone morphogenetic protein 1 is an extracellular processing enzyme of the laminin 5 gamma 2 chain. J Biol Chem 275:22728–22735PubMedCrossRefGoogle Scholar
  4. Aumailley M, El Khal A, Knoss N, Tunggal L (2003) Laminin 5 processing and its integration into the ECM. Matrix Biol 22:49–54PubMedCrossRefGoogle Scholar
  5. Aumailley M, Bruckner-Tuderman L et al (2005) A simplified laminin nomenclature. Matrix Biol 24:326–332PubMedCrossRefGoogle Scholar
  6. Bachy S, Letourneur F, Rousselle P (2008) Syndecan-1 interaction with the LG4/5 domain in laminin-332 is essential for keratinocyte migration. J Cell Physiol 214:238–249PubMedCrossRefGoogle Scholar
  7. Baker SE, Hopkinson SB, Fitchmun M, Andreason GL, Frasier F, Plopper G, Quaranta V, Jones JC (1996) Laminin-5 and hemidesmosomes: role of the alpha 3 chain subunit in hemidesmosome stability and assembly. J Cell Sci 109(Pt 10):2509–2520PubMedGoogle Scholar
  8. Bates RC, Edwards NS, Yates JD (2000) Spheroids and cell survival. Crit Rev Oncol Hematol 36:61–74PubMedCrossRefGoogle Scholar
  9. Betson M, Lozano E, Zhang J, Braga VM (2002) Rac activation upon cell-cell contact formation is dependent on signaling from the epidermal growth factor receptor. J Biol Chem 277:36962–36969PubMedCrossRefGoogle Scholar
  10. Boehm AL, Sen M, Seethala R, Gooding WE, Freilino M, Wong SM, Wang S, Johnson DE, Grandis JR (2008) Combined targeting of epidermal growth factor receptor, signal transducer and activator of transcription-3, and Bcl-X(L) enhances antitumor effects in squamous cell carcinoma of the head and neck. Mol Pharmacol 73:1632–1642PubMedCrossRefGoogle Scholar
  11. Cabodi S, Moro L, Bergatto E, Boeri Erba E, Di Stefano P, Turco E, Tarone G, Defilippi P (2004) Integrin regulation of epidermal growth factor (EGF) receptor and of EGF-dependent responses. Biochem Soc Trans 32:438–442PubMedCrossRefGoogle Scholar
  12. Carter WG, Ryan MC, Gahr PJ (1991) Epiligrin, a new cell adhesion ligand for integrin alpha 3 beta 1 in epithelial basement membranes. Cell 65:599–610PubMedCrossRefGoogle Scholar
  13. Choma DP, Pumiglia K, DiPersio CM (2004) Integrin alpha3beta1 directs the stabilization of a polarized lamellipodium in epithelial cells through activation of Rac1. J Cell Sci 117:3947–3959PubMedCrossRefGoogle Scholar
  14. Colognato H, Yurchenco PD (2000) Form and function: the laminin family of heterotrimers. Dev Dyn 218:213–234PubMedCrossRefGoogle Scholar
  15. Daemi N, Thomasset N, Lissitzky JC, Dumortier J, Jacquier MF, Pourreyron C, Rousselle P, Chayvialle JA, Remy L (2000) Anti-beta4 integrin antibodies enhance migratory and invasive abilities of human colon adenocarcinoma cells and their MMP-2 expression. Int J Cancer 85:850–856PubMedCrossRefGoogle Scholar
  16. Damsky CH, Ilic D (2002) Integrin signaling–it’s where the action is. Curr Opin Cell Biol, 14, 594–602Google Scholar
  17. Daubriac J, Fleury-Feith J, Kheuang L, Galipon J, Saint-Albin A, Renier A, Giovannini M, Galateau-Salle F, Jaurand MC (2009) Malignant pleural mesothelioma cells resist anoikis as quiescent pluricellular aggregates. Cell Death Differ 16:1146–1155PubMedCrossRefGoogle Scholar
  18. Day M, Zhao X, Vallorosi C, Putzi M, Powell C, Lin C, Day K (1999) E-cadherin mediates aggregation-dependent survival of prostate and mammary epithelial cells through the retinoblastoma cell cycle control pathway. J Biol Chem 274:9656–9664PubMedCrossRefGoogle Scholar
  19. DiPersio CM, Hodivala-Dilke KM, Jaenisch R, Kreidberg JA, Hynes RO (1997) alpha3beta1 Integrin is required for normal development of the epidermal basement membrane. J Cell Biol 137:729–742PubMedCrossRefGoogle Scholar
  20. Dumas V, Kanitakis J, Charvat S, Euvrard S, Faure M, Claudy A (1999) Expression of basement membrane antigens and matrix metalloproteinases 2 and 9 in cutaneous basal and squamous cell carcinomas. Anticancer Res 19:2929–2938PubMedGoogle Scholar
  21. Ebihara N, Mizushima H, Miyazaki K, Watanabe Y, Ikawa S, Nakayasu K, Kanai A (2000) The functions of exogenous and endogenous laminin-5 on corneal epithelial cells. Exp Eye Res 71:69–79PubMedCrossRefGoogle Scholar
  22. Fedor-Chaiken M, Hein PW, Stewart JC, Brackenbury R, Kinch MS (2003) E-cadherin binding modulates EGF receptor activation. Cell Commun Adhes 10:105–118PubMedGoogle Scholar
  23. Fitsialos G, Bourget I et al (2008) HIF1 transcription factor regulates laminin-332 expression and keratinocyte migration. J Cell Sci 121:2992–3001PubMedCrossRefGoogle Scholar
  24. Fournier AK, Campbell LE, Castagnino P, Liu WF, Chung BM, Weaver VM, Chen CS, Assoian RK (2008) Rac-dependent cyclin D1 gene expression regulated by cadherin- and integrin-mediated adhesion. J Cell Sci 121:226–233PubMedCrossRefGoogle Scholar
  25. Franz M, Richter P, Geyer C, Hansen T, Acuna LD, Hyckel P, Bohmer FD, Kosmehl H, Berndt A (2007) Mesenchymal cells contribute to the synthesis and deposition of the laminin-5 gamma2 chain in the invasive front of oral squamous cell carcinoma. J Mol Histol 38:183–190PubMedCrossRefGoogle Scholar
  26. Frisch SM, Screaton RA (2001) Anoikis mechanisms. Curr Opin Cell Biol 13:555–562PubMedCrossRefGoogle Scholar
  27. Gagnoux-Palacios L, Allegra M, Spirito F, Pommeret O, Romero C, Ortonne JP, Meneguzzi G (2001) The short arm of the laminin gamma2 chain plays a pivotal role in the incorporation of laminin 5 into the extracellular matrix and in cell adhesion. J Cell Biol 153:835–850PubMedCrossRefGoogle Scholar
  28. Garzino-Demo P, Carrozzo M, Trusolino L, Savoia P, Gandolfo S, Marchisio PC (1998) Altered expression of alpha 6 integrin subunit in oral squamous cell carcinoma and oral potentially malignant lesions. Oral Oncol 34:204–210PubMedCrossRefGoogle Scholar
  29. Gavard J, Gutkind JS (2008) A Molecular Crosstalk between E-cadherin and EGFR Signaling Networks. In: Haley JD and Gullick WJ (ed). Cancer Drug Discovery and Development: EGFR Signaling Networks in Cancer Therapy, Humana Press, New Jersey, 139–154Google Scholar
  30. Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V (1997) Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277:225–228PubMedCrossRefGoogle Scholar
  31. Giannelli G, Bergamini C, Fransvea E, Sgarra C, Antonaci S (2005) Laminin-5 with transforming growth factor-beta1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology 129:1375–1383PubMedCrossRefGoogle Scholar
  32. Gilmore AP (2005) Anoikis. Cell Death Differ 12(Suppl 2):1473–1477PubMedCrossRefGoogle Scholar
  33. Ginos MA, Page GP, Michalowicz BS, Patel KJ, Volker SE, Pambuccian SE, Ondrey FG, Adams GL, Gaffney PM (2004) Identification of a gene expression signature associated with recurrent disease in squamous cell carcinoma of the head and neck. Cancer Res 64:55–63PubMedCrossRefGoogle Scholar
  34. Goldfinger LE, Stack MS, Jones JC (1998) Processing of laminin-5 and its functional consequences: role of plasmin and tissue-type plasminogen activator. J Cell Biol 141:255–265PubMedCrossRefGoogle Scholar
  35. Goldfinger LE, Hopkinson SB, deHart GW, Collawn S, Couchman JR, Jones JC (1999) The alpha3 laminin subunit, alpha6beta4 and alpha3beta1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin. J Cell Sci 112(Pt 16):2615–2629PubMedGoogle Scholar
  36. Gonzales M, Haan K, Baker SE, Fitchmun M, Todorov I, Weitzman S, Jones JC (1999) A cell signal pathway involving laminin-5, alpha3beta1 integrin, and mitogen-activated protein kinase can regulate epithelial cell proliferation. Mol Biol Cell 10:259–270PubMedGoogle Scholar
  37. Grandis JR, Drenning SD et al (2000) Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo. Proc Natl Acad Sci USA 97:4227–4232PubMedCrossRefGoogle Scholar
  38. Hamill KJ, Hopkinson SB, Debiase P, Jones JC (2009) BPAG1e maintains keratinocyte polarity through {beta}4 integrin-mediated modulation of Rac 1 and cofilin activities. Mol Biol Cell 13:3845–3858Google Scholar
  39. Hofmann C, Obermeier F, Artinger M, Hausmann M, Falk W, Schoelmerich J, Rogler G, Grossmann J (2007) Cell-cell contacts prevent anoikis in primary human colonic epithelial cells. Gastroenterology 132:587–600PubMedCrossRefGoogle Scholar
  40. Hoschuetzky H, Aberle H, Kemler R (1994) Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol 127:1375–1380PubMedCrossRefGoogle Scholar
  41. Jones J, Sugiyama M, Giancotti F, Speight PM, Watt FM (1996) Transfection of beta 4 integrin subunit into a neoplastic keratinocyte line fails to restore terminal differentiation capacity or influence proliferation. Cell Adhes Commun 4:307–316PubMedCrossRefGoogle Scholar
  42. Jorissen RN, Walker F, Pouliot N, Garrett TP, Ward CW, Burgess AW (2003) Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res 284:31–53PubMedCrossRefGoogle Scholar
  43. Juliano RL (2002) Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin- superfamily members. Annu Rev Pharmacol Toxicol 42:283–323PubMedCrossRefGoogle Scholar
  44. Kainulainen T, Autio-Harmainen H, Oikarinen A, Salo S, Tryggvason K, Salo T (1997) Altered distribution and synthesis of laminin-5 (kalinin) in oral lichen planus, epithelial dysplasias and squamous cell carcinomas. Br J Dermatol 136:331–336PubMedCrossRefGoogle Scholar
  45. Kamai T, Tsujii T, Arai K, Takagi K, Asami H, Ito Y, Oshima H (2003) Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer. Clin Cancer Res 9:2632–2641PubMedGoogle Scholar
  46. Kang HG, Jenabi JM et al (2007) E-cadherin cell-cell adhesion in ewing tumor cells mediates suppression of anoikis through activation of the ErbB4 tyrosine kinase. Cancer Res 67:3094–3105PubMedCrossRefGoogle Scholar
  47. Kantak SS, Kramer RH (1998) E-cadherin regulates anchorage-independent growth and survival in oral squamous cell carcinoma cells. J Biol Chem 273:16953–16961PubMedCrossRefGoogle Scholar
  48. Katayama M, Funakoshi A, Sumii T, Sanzen N, Sekiguchi K (2005) Laminin gamma2-chain fragment circulating level increases in patients with metastatic pancreatic ductal cell adenocarcinomas. Cancer Lett 225:167–176PubMedCrossRefGoogle Scholar
  49. Kawano K, Kantak S, Murai M, Yao C-C, Kramer R (2001) Integrin alpha 3 beta 1 engagement disrupts intercellular adhesion. Exp Cell Res 262:180–196PubMedCrossRefGoogle Scholar
  50. Kim Y, Kugler MC, Wei Y, Kim KK, Li X, Brumwell AN, Chapman HA (2009) Integrin alpha3beta1-dependent beta-catenin phosphorylation links epithelial Smad signaling to cell contacts. J Cell Biol 184:309–322PubMedCrossRefGoogle Scholar
  51. Kligys K, Claiborne JN, DeBiase PJ, Hopkinson SB, Wu Y, Mizuno K, Jones JC (2007) The slingshot family of phosphatases mediates Rac1 regulation of cofilin phosphorylation, laminin-332 organization, and motility behavior of keratinocytes. J Biol Chem 282:32520–32528PubMedCrossRefGoogle Scholar
  52. Kligys K, Yao J, Yu D, Jones JC (2009) 14-3-3zeta/tau heterodimers regulate Slingshot activity in migrating keratinocytes. Biochem Biophys Res Commun 383:450–454PubMedCrossRefGoogle Scholar
  53. Koshikawa N, Moriyama K, Takamura H, Mizushima H, Nagashima Y, Yanoma S, Miyazaki K (1999) Overexpression of laminin gamma2 chain monomer in invading gastric carcinoma cells. Cancer Res 59:5596–5601PubMedGoogle Scholar
  54. Koshikawa N, Giannelli G, Cirulli V, Miyazaki K, Quaranta V (2000) Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol 148:615–624PubMedCrossRefGoogle Scholar
  55. Koshikawa N, Minegishi T, Nabeshima K, Seiki M (2008) Development of a new tracking tool for the human monomeric laminin-gamma 2 chain in vitro and in vivo. Cancer Res 68:530–536PubMedCrossRefGoogle Scholar
  56. Kosmehl H, Berndt A, Strassburger S, Borsi L, Rousselle P, Mandel U, Hyckel P, Zardi L, Katenkamp D (1999) Distribution of laminin and fibronectin isoforms in oral mucosa and oral squamous cell carcinoma. Br J Cancer 81:1071–1079PubMedCrossRefGoogle Scholar
  57. Kovacs EM, Ali RG, McCormack AJ, Yap AS (2002) E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. J Biol Chem 277:6708–6718PubMedCrossRefGoogle Scholar
  58. Kramer RH, Shen X, Zhou H (2005) Tumor cell invasion and survival in head and neck cancer. Cancer Metastasis Rev 24:35–45PubMedCrossRefGoogle Scholar
  59. Lamar JM, Iyer V, DiPersio CM (2008) Integrin alpha3beta1 potentiates TGFbeta-mediated induction of MMP-9 in immortalized keratinocytes. J Invest Dermatol 128:575–586PubMedGoogle Scholar
  60. Lawlor ER, Scheel C, Irving J, Sorensen PH (2002) Anchorage-independent multi-cellular spheroids as an in vitro model of growth signaling in Ewing tumors. Oncogene 21:307–318PubMedCrossRefGoogle Scholar
  61. Leeman RJ, Lui VW, Grandis JR (2006) STAT3 as a therapeutic target in head and neck cancer. Expert Opin Biol Ther 6:231–241PubMedCrossRefGoogle Scholar
  62. Levy DE, Darnell JE Jr (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651–662PubMedCrossRefGoogle Scholar
  63. Liu WF, Nelson CM, Pirone DM, Chen CS (2006) E-cadherin engagement stimulates proliferation via Rac1. J Cell Biol 173:431–441PubMedCrossRefGoogle Scholar
  64. Maragou P, Bazopoulou-Kyrkanidou E, Panotopoulou E, Kakarantza-Angelopoulou E, Sklavounou-Andrikopoulou A, Kotaridis S (1999) Alteration of integrin expression in oral squamous cell carcinomas. Oral Dis 5:20–26PubMedCrossRefGoogle Scholar
  65. Margadant C, Raymond K, Kreft M, Sachs N, Janssen H, Sonnenberg A (2009) Integrin alpha3beta1 inhibits directional migration and wound re-epithelialization in the skin. J Cell Sci 122:278–288PubMedCrossRefGoogle Scholar
  66. McLachlan RW, Kraemer A, Helwani FM, Kovacs EM, Yap AS (2007) E-cadherin adhesion activates c-Src signaling at cell-cell contacts. Mol Biol Cell 18:3214–3223PubMedCrossRefGoogle Scholar
  67. Mercurio AM, Rabinovitz I, Shaw LM (2001) The alpha6beta4 integrin and epithelial cell migration. Curr Opin Cell Biol 13:541–545PubMedCrossRefGoogle Scholar
  68. Miranti CK, Brugge JS (2002) Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol 4:E83–E90PubMedCrossRefGoogle Scholar
  69. Mizushima H, Takamura H, Miyagi Y, Kikkawa Y, Yamanaka N, Yasumitsu H, Misugi K, Miyazaki K (1997) Identification of integrin-dependent and -independent cell adhesion domains in COOH-terminal globular region of laminin-5 alpha 3 chain. Cell Growth Differ 8:979–987PubMedGoogle Scholar
  70. Nakajima M, Hayashi K et al (2003) Effect of Wf-536, a novel ROCK inhibitor, against metastasis of B16 melanoma. Cancer Chemother Pharmacol 52:319–324PubMedCrossRefGoogle Scholar
  71. Nakamura T, Kato Y, Fuji H, Horiuchi T, Chiba Y, Tanaka K (2003) E-cadherin-dependent intercellular adhesion enhances chemoresistance. Int J Mol Med 12:693–700PubMedGoogle Scholar
  72. Nakashima Y, Kariya Y, Yasuda C, Miyazaki K (2005) Regulation of cell adhesion and type VII collagen binding by the beta3 chain short arm of laminin-5: effect of its proteolytic cleavage. J Biochem 138:539–552PubMedCrossRefGoogle Scholar
  73. Nguyen BP, Ryan MC, Gil SG, Carter WG (2000) Deposition of laminin 5 in epidermal wounds regulates integrin signaling and adhesion. Curr Opin Cell Biol 12:554–562PubMedCrossRefGoogle Scholar
  74. Niki T, Kohno T et al (2002) Frequent co-localization of Cox-2 and laminin-5 gamma2 chain at the invasive front of early-stage lung adenocarcinomas. Am J Pathol 160:1129–1141PubMedGoogle Scholar
  75. Nishimura Y, Itoh K, Yoshioka K, Tokuda K, Himeno M (2003) Overexpression of ROCK in human breast cancer cells: evidence that ROCK activity mediates intracellular membrane traffic of lysosomes. Pathol Oncol Res 9:83–95PubMedCrossRefGoogle Scholar
  76. Nordemar S, Hogmo A, Lindholm J, Auer G, Munck-Wikland E (2003) Laminin-5 gamma 2: a marker to identify oral mucosal lesions at risk for tumor development? Anticancer Res 23:4985–4989PubMedGoogle Scholar
  77. Ogawa T, Tsubota Y, Hashimoto J, Kariya Y, Miyazaki K (2007) The short arm of laminin gamma2 chain of laminin-5 (laminin-332) binds syndecan-1 and regulates cellular adhesion and migration by suppressing phosphorylation of integrin beta4 chain. Mol Biol Cell 18:1621–1633PubMedCrossRefGoogle Scholar
  78. Ondruschka C, Buhtz P, Motsch C, Freigang B, Schneider-Stock R, Roessner A, Boltze C (2002) Prognostic value of MMP-2, -9 and TIMP-1,-2 immunoreactive protein at the invasive front in advanced head and neck squamous cell carcinomas. Pathol Res Pract 198:509–515PubMedCrossRefGoogle Scholar
  79. Onishi A, Chen Q, Humtsoe JO, Kramer RH (2008) STAT3 signaling is induced by intercellular adhesion in squamous cell carcinoma cells. Exp Cell Res 314:377–386PubMedCrossRefGoogle Scholar
  80. Ono Y, Nakanishi Y, Ino Y, Niki T, Yamada T, Yoshimura K, Saikawa M, Nakajima T, Hirohashi S (1999) Clinocopathologic significance of laminin-5 gamma2 chain expression in squamous cell carcinoma of the tongue: immunohistochemical analysis of 67 lesions. Cancer 85:2315–2321PubMedCrossRefGoogle Scholar
  81. Pang JH, Kraemer A, Stehbens SJ, Frame MC, Yap AS (2005) Recruitment of phosphoinositide 3-kinase defines a positive contribution of tyrosine kinase signaling to E-cadherin function. J Biol Chem 280:3043–3050PubMedCrossRefGoogle Scholar
  82. Patarroyo M, Tryggvason K, Virtanen I (2002) Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol 12:197–207PubMedCrossRefGoogle Scholar
  83. Patel V, Aldridge K, Ensley JF, Odell E, Boyd A, Jones J, Gutkind JS, Yeudall WA (2002) Laminin-gamma2 overexpression in head-and-neck squamous cell carcinoma. Int J Cancer 99:583–588PubMedCrossRefGoogle Scholar
  84. Pece S, Gutkind JS (2000) Signaling from E-cadherins to the MAPK pathway by the recruitment and activation of epidermal growth factor receptors upon cell-cell contact formation. J Biol Chem 275:41227–41233PubMedCrossRefGoogle Scholar
  85. Pyke C, Salo S, Ralfkiaer E, Romer J, Dano K, Tryggvason K (1995) Laminin-5 is a marker of invading cancer cells in some human carcinomas and is coexpressed with the receptor for urokinase plasminogen activator in budding cancer cells in colon adenocarcinomas. Cancer Res 55:4132–4139PubMedGoogle Scholar
  86. Qian X, Karpova T, Sheppard AM, McNally J, Lowy DR (2004) E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J 23:1739–1748PubMedCrossRefGoogle Scholar
  87. Raymond K, Kreft M, Song JY, Janssen H, Sonnenberg A (2007) Dual Role of alpha6beta4 integrin in epidermal tumor growth: tumor-suppressive versus tumor-promoting function. Mol Biol Cell 18:4210–4221PubMedCrossRefGoogle Scholar
  88. Reddy P, Liu L et al (2005) Formation of E-cadherin-mediated cell-cell adhesion activates AKT and mitogen activated protein kinase via phosphatidylinositol 3 kinase and ligand-independent activation of epidermal growth factor receptor in ovarian cancer cells. Mol Endocrinol 19:2564–2578PubMedCrossRefGoogle Scholar
  89. Remy L, Trespeuch C, Bachy S, Scoazec JY, Rousselle P (2006) Matrilysin 1 influences colon ­carcinoma cell migration by cleavage of the laminin-5 beta3 chain. Cancer Res 66:11228–11237PubMedCrossRefGoogle Scholar
  90. Rousselle P, Lunstrum GP, Keene DR, Burgeson RE (1991) Kalinin: an epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments. J Cell Biol 114:567–576PubMedCrossRefGoogle Scholar
  91. Sahai E, Marshall CJ (2003) Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 5:711–719PubMedCrossRefGoogle Scholar
  92. Santini MT, Rainaldi G, Indovina PL (2000) Apoptosis, cell adhesion and the extracellular matrix in the three-dimensional growth of multicellular tumor spheroids. Crit Rev Oncol Hematol 36:75–87PubMedCrossRefGoogle Scholar
  93. Schlessinger J (2002) Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110:669–672PubMedCrossRefGoogle Scholar
  94. Seftor RE, Seftor EA, Koshikawa N, Meltzer PS, Gardner LM, Bilban M, Stetler-Stevenson WG, Quaranta V, Hendrix MJ (2001) Cooperative interactions of laminin 5 gamma2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res 61:6322–6327PubMedGoogle Scholar
  95. Shang M, Koshikawa N, Schenk S, Quaranta V (2001) The LG3 module of laminin-5 harbors a binding site for integrin alpha3beta1 that promotes cell adhesion, spreading, and migration. J Biol Chem 276:33045–33053PubMedCrossRefGoogle Scholar
  96. Shen X, Kramer RH (2004) Adhesion-mediated squamous cell carcinoma survival through ligand-independent activation of epidermal growth factor receptor. Am J Pathol 165:1315–1329PubMedGoogle Scholar
  97. St Croix B, Kerbel RS (1997) Cell adhesion and drug resistance in cancer. Curr Opin Oncol 9:549–556PubMedCrossRefGoogle Scholar
  98. St Croix B, Florenes VA, Rak JW, Flanagan M, Bhattacharya N, Slingerland JM, Kerbel RS (1996) Impact of the cyclin-dependent kinase inhibitor p27Kip1 on resistance of tumor cells to anticancer agents. Nat Med 2:1204–1210PubMedCrossRefGoogle Scholar
  99. Tran M, Rousselle P, Nokelainen P, Tallapragada S, Nguyen NT, Fincher EF, Marinkovich MP (2008) Targeting a tumor-specific laminin domain critical for human carcinogenesis. Cancer Res 68:2885–2894PubMedCrossRefGoogle Scholar
  100. Tripathi M, Nandana S, Yamashita H, Ganesan R, Kirchhofer D, Quaranta V (2008) Laminin-332 is a substrate for hepsin, a protease associated with prostate cancer progression. J Biol Chem 283:30576–30584PubMedCrossRefGoogle Scholar
  101. Van Waes C (1995) Cell adhesion and regulatory molecules involved in tumor formation, hemostasis, and wound healing. Head Neck 17:140–147PubMedCrossRefGoogle Scholar
  102. Van Waes C, Kozarsky KF, Warren AB, Kidd L, Paugh D, Liebert M, Carey TE (1991) The A9 antigen associated with aggressive human squamous carcinoma is structurally and functionally similar to the newly defined integrin alpha 6 beta 4. Cancer Res 51:2395–2402PubMedGoogle Scholar
  103. Van Waes C, Surh DM et al (1995) Increase in suprabasilar integrin adhesion molecule expression in human epidermal neoplasms accompanies increased proliferation occurring with immortalization and tumor progression. Cancer Res 55:5434–5444PubMedGoogle Scholar
  104. Veitch DP, Nokelainen P et al (2003) Mammalian tolloid metalloproteinase, and not matrix metalloprotease 2 or membrane type 1 metalloprotease, processes laminin-5 in keratinocytes and skin. J Biol Chem 278:15661–15668PubMedCrossRefGoogle Scholar
  105. Vultur A, Cao J, Arulanandam R, Turkson J, Jove R, Greer P, Craig A, Elliott B, Raptis L (2004) Cell-to-cell adhesion modulates Stat3 activity in normal and breast carcinoma cells. Oncogene 23:2600–2616PubMedCrossRefGoogle Scholar
  106. Waterman EA, Sakai N, Nguyen NT, Horst BA, Veitch DP, Dey CN, Ortiz-Urda S, Khavari PA, Marinkovich MP (2007) A laminin-collagen complex drives human epidermal carcinogenesis through phosphoinositol-3-kinase activation. Cancer Res 67:4264–4270PubMedCrossRefGoogle Scholar
  107. Wolf GT, Carey TE (1992) Tumor antigen phenotype, biologic staging, and prognosis in head and neck squamous carcinoma. J Natl Cancer Inst Monogr 13:67–74PubMedGoogle Scholar
  108. Yoshizaki T, Sato H, Maruyama Y, Murono S, Furukawa M, Park CS, Seiki M (1997) Increased expression of membrane type 1-matrix metalloproteinase in head and neck carcinoma. Cancer 79:139–144PubMedCrossRefGoogle Scholar
  109. Yuen HW, Ziober AF, Gopal P, Nasrallah I, Falls EM, Meneguzzi G, Ang HQ, Ziober BL (2005) Suppression of laminin-5 expression leads to increased motility, tumorigenicity, and invasion. Exp Cell Res 309:198–210PubMedCrossRefGoogle Scholar
  110. Zhang K, Kramer RH (1996) Laminin 5 deposition promotes keratinocyte motility. Exp Cell Res 227:309–322PubMedCrossRefGoogle Scholar
  111. Zhang K, Kim JP, Woodley DT, Waleh NS, Chen YQ, Kramer RH (1996) Restricted expression and function of laminin 1-binding integrins in normal and malignant oral mucosal keratinocytes. Cell Adhes Commun 4:159–174PubMedCrossRefGoogle Scholar
  112. Zhou H, Kramer RH (2005) Integrin engagement differentially modulates epithelial cell motility by RhoA/ROCK and PAK1. J Biol Chem 280:10624–10635PubMedCrossRefGoogle Scholar
  113. Ziober BL, Kramer RH (2003) Adhesion receptors in oral cancer invasion. In: Ensley JF, Gutkind JS (eds) Head and neck cancer. Elsevier Science, New York, pp 65–79, Chap 6CrossRefGoogle Scholar
  114. Ziober BL, Silverman SS Jr, Kramer RH (2001) Adhesive mechanisms regulating invasion and metastasis in oral cancer. Crit Rev Oral Biol Med 12:499–510PubMedCrossRefGoogle Scholar
  115. Ziober AF, Falls EM, Ziober BL (2006) The extracellular matrix in oral squamous cell carcinoma: friend or foe? Head Neck 28:740–749PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Barry L. Ziober
  • Joseph O. Humtsoe
  • Randall H. Kramer
    • 1
  1. 1.Department of Cell and Tissue BiologyUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations