Advertisement

X-Ray Energy-Dispersive Spectrometry in Scanning Transmission Electron Microscopes

  • Masashi Watanabe
Chapter

Abstract

Recently developed aberration correctors have brought significant improvements in materials characterization. In aberration-corrected scanning transmission electron microscopy (STEM), the incident probe dimensions can be refined significantly, and image resolution has already reached sub-angstrom levels in high-angle annular dark-field (HAADF) STEM imaging (Batson et al. 2002, Nellist et al. 2004). In addition, materials characterization at the atomic level can routinely be performed by electron energy-loss spectrometry (EELS) in aberration-corrected STEM (e.g. Varela et al. 2005). The aberration correction of the incident beam is also very useful for X-ray energy-dispersive spectrometry (XEDS) because the spatial resolution can be dramatically improved with the refined probe (Watanabe et al. 2006).

Keywords

Grain Boundary Scanning Transmission Electron Microscopy Spectrum Imaging Chromatic Aberration Atom Probe Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author wishes to acknowledge the support of the National Science Foundation (grant DMR-0804528) and Bechtel Bettis, Inc. The author would also like to thank Prof. David Williams (currently at the Univ. of Alabama, Huntsville) for his thoughtful supervision for many years. In collaboration with Prof. Williams, the ζ-factor method and MSA plug-ins were developed. In addition, the author would like to thank Prof. Christopher Kiely, Mr. David Ackland and colleagues at Lehigh, Prof. Zenji Horita at Kyushu University, Dr. Ulrich Dahmen and colleague at National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Dr. Vicki Keast at Univ. Newcastle, Dr. Michel Bosman at Institute of Microelectronics, Dr. Kazuo Ishizuka and Mr. Kenta Yoshimura at HREM Research, Inc., Dr. Hidetaka Sawada, Mr. Eiji Okunishi and Mr. Masahiko Kanno at JEOL, Mr. Shintaro Yazuka, Mr. Toshihiro Aoki, Mr. Toshihiro Nomura, Dr. Masahiro Kawasaki, and Dr. Tom Isabell at JEOL USA, and Dr. Toshie Yaguchi at Hitachi Hitechnologies for their collaboration.

References

  1. L.J. Allen, T.W. Josefsson, C.J. Rossouw, Interaction delocalization in characteristic X-ray emission from light elements. Ultramicroscopy 55, 258 (1994)Google Scholar
  2. J.E. Barth, P. Kruit, Addition of different contributions to the charged particle probe size. Optik 101, 101 (1996)Google Scholar
  3. P.E. Batson, Conduction bandstructure in strained silicon by spatially resolved electron energy loss spectroscopy. Ultramicroscopy 59, 63 (1995)Google Scholar
  4. P.E. Batson, N. Dellby, O.L. Krivanek, Sub-Ångstrom resolution using aberration corrected electron optics. Nature 418, 617 (2002)Google Scholar
  5. G. Bertuccio, A. Castoldi, A. Longoni, M. Sampietro, C. Gauthier, New electrode geometry and potential distribution for soft X-ray drift detectors. Nucl Instrum Methods Phys Res A 312, 613 (1992)Google Scholar
  6. M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 1999)Google Scholar
  7. M. Bosman, V.J. Keast, J.L. García-Muñoz, A.J. D’Alfonso, S.D. Findlay, L.J. Allen, Two-dimensional mapping of chemical information at atomic resolution. Phys. Rev. Lett. 99, 086102 (2007)Google Scholar
  8. M. Bosman, V.J. Keast, M. Watanabe, A.I. Maaroof, M.B. Cortie, Mapping surface plasmons at the nanometre scale with an electron beam. Nanotechnology 18, 165505 (2007)Google Scholar
  9. M. Bosman, V.J. Keast, M. Watanabe, D.G. McCulloch, M. Shakerzadeh, E.H.T. Teo, B.K. Tay, Quantitative, nanoscale mapping of sp2 percentage and crystal orientation in carbon multilayers. Carbon 47, 94 (2009)Google Scholar
  10. M. Bosman, M. Watanabe, D.T.L. Alexander, V.J. Keast, Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. Ultramicroscopy 106, 1024 (2006)Google Scholar
  11. R. Bro, A.K. Smilde, Centering and scaling in component analysis. J. Chemometr. 17, 16 (2003)Google Scholar
  12. L.M. Brown, Scanning transmission electron microscopy: microanalysis for the microelectronic age. J. Phys. F 11, 1 (1981)Google Scholar
  13. N.D. Browning, S.J. Pennycook, Atomic-resolution electron energy-loss spectroscopy in the scanning transmission electron microscope. J. Microsc. 180, 230 (1995)Google Scholar
  14. J.F. Bullock, C.J. Humphreys, A.J.W. Mace, H.E. Bishop, J.M. Titchmarsh, in Microscopy in Semiconductor Materials 1985, ed. by A.G. Gullis, D.B. Holt, Crystalline effects in the analysis of semiconductor materials using Auger electrons and X-rays (Adam Hilger, Bristol, 1985), p. 405Google Scholar
  15. M.G. Burke, M. Watanabe, D.B. Williams, J.M. Hyde, Quantitative characterization of nanoprecipitates in irradiated low alloy steels: advances in the application of FEG-STEM quantitative analysis to real materials. J. Mater. Sci. 41, 4512 (2006)Google Scholar
  16. E. Cao, G.C. Schatz, J.T. Hupp, Synthesis and Optical Properties of Anisotropic Metal Nanoparticles. J. Fluoresc. 14, 331 (2004)Google Scholar
  17. J.N. Chapman, W.A.P. Nicholson, P.A. Crozier, Understanding thin film X-ray spectra. J. Microsc. 136, 179 (1984)Google Scholar
  18. G. Cliff, G.W. Lorimer, The quantitative analysis of thin specimens. J. Microsc. 103, 203 (1975)Google Scholar
  19. R.N. Cochran, F.H. Home, Statistically weighted principal component analysis of rapid scanning wavelength kinetics experiments. Anal. Chem. 49, 846 (1977)Google Scholar
  20. C. Colliex, C. Mory, in Quantitative Electron Microscopy, ed. by J.N. Chapman, A. Craven, Quantitative aspects of scanning transmission electron microscopy. (Scottish University Summer School in Physics, Glasgow, Scotland, 1984), p. 149Google Scholar
  21. A.V. Crewe, D.N. Eggenberger, J. Wall, L.M. Welter, Electron gun using a field emission source. Rev. Sci. Inst. 39, 576 (1968)Google Scholar
  22. A.V. Crewe, D.B. Salzman, On the optimum resolution for a corrected STEM. Ultramicroscopy 9, 373 (1982)Google Scholar
  23. A.V. Crewe, J. Wall, A scanning microscope with 5 Å resolution. J. Mol. Biol. 48, 375 (1970)Google Scholar
  24. M.I. Danylenko, M. Watanabe, C. Li, A.V. Krajnikov, D.B. Williams, M.A. Vasiliev, Analytical electron microscopy and Auger electron spectroscopy study of low-temperature diffusion in multilayer Cr–Cu–Ni–Au thin films. Thin Solid Films 444, 75 (2003)Google Scholar
  25. P. Doig, P.E.J. Flewitt, The detection of monolayer grain boundary segregations in steels using STEM-EDS X-ray microanalysis. Met. Trans. A 13, 1397 (1982)Google Scholar
  26. P. Doig, D. Lonsdale, P.E.J. Flewitt, The spatial resolution of X-ray microanalysis in the scanning transmission electron microscope. Philos. Mag. A 41, 761 (1980)Google Scholar
  27. D. Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez, R. Gauvin, CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29, 92 (2007)Google Scholar
  28. C. Dwyer, R. Erni, J. Etheridge, Method to measure spatial coherence of subangstrom electron beams. Appl. Phys. Lett. 93, 021115 (2008)Google Scholar
  29. J.K. Edwards, B. Solsona, E.N. Ntainjua, A.F. Carley, A.A. Herzing, C.J. Kiely, G.J. Hutchings, Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323, 1037 (2009)Google Scholar
  30. R.F. Egerton, Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. Ultramicroscopy 107, 575 (2007)Google Scholar
  31. D.I. Enache, J. Edwards, P. Landon, B. Solsona-Espriu, A.F. Carley, A.A. Herzing, M. Watanabe, C.J. Kiely, D.W. Knight, G.J. Hutchings, Solvent-free oxidation of primary alcohols to aldehydes using titania-supported gold-palladium catalysts. Science 311, 362 (2006)Google Scholar
  32. J. Fertig, H. Rose, On the theory of image formation in the electron microscope II. Signal-to-noise considerations on specimen resolution and quality of phase-contrast images obtained by hollow cone illumination. Optik 54, 165 (1979)Google Scholar
  33. C.E. Fiori, C.R. Swyt, in Microbeam Analysis – 1989, ed. by P.E. Russell, The use of theoretically generated spectra to estimate detectability limits and concentration varience in energy-dispersive X-ray microanalysis (San Francisco Press, San Francisco, CA, 1989), p. 236Google Scholar
  34. C.E. Fiori, C.R. Swyt, Desk Top Spectrum Analyzer (DTSA), U.S. Patent 5299138, (1994)Google Scholar
  35. C.E. Fiori, C.R. Swyt, R.L. Myklebust, NIST/NIH desk top spectrum analyzer (1992), public domain software available from the National Institute of Standards and Technology Gaithersburg, MD. http://www.cstl.nist.gov/div837/Division/outputs/DTSA/DTSA.htm
  36. A.J. Garratt-Reed, D.C. Bell, Energy-Dispersive X-ray Analysis in the Electron Microscope (BIOS Scientific Publishers, Oxford, 2003)Google Scholar
  37. A. Genç, R. Banerjee, G.B. Thompson, D.M. Maher, A.W. Johnson, H.L. Fraser, Complementary techniques for the characterization of thin film Ti/Nb multilayers. Ultramicroscopy 109, 1276 (2009)Google Scholar
  38. J.I. Goldstein, J.L. Costley, G.W. Lorimer, R.J.B. Reed, in Scanning Electron Microscopy – 1977, vol 1, ed. by O. Johari, Quantitative X-ray analysis in the electron microscope (IITRI, Chicago, IL, 1977), p. 315Google Scholar
  39. J.I. Goldstein, C.E. Lyman, Z. Zhang, in Microbeam Analysis – 1990, ed. by J.R. Michael, P. Ingram, Spatial resolution and detectability limits in thin-film X-ray microanalysis (San Francisco Press, San Francisco, CA, 1990), p. 265Google Scholar
  40. M. Haider, H. Müller, S. Uhlemann, J. Zach, U. Loebau, R. Hoeschen, Prerequisites for a C c/C s-corrected ultrahigh-resolution TEM. Ultramicroscopy 108, 167, (2008)Google Scholar
  41. M. Haider, S. Uhlemann, J. Zach, Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy 81, 163 (2000)Google Scholar
  42. T. Hanai, M. Hibino, Effect of the spherical aberration on electron probe size. J. Electron Microsc. 33, 116 (1984)Google Scholar
  43. A.A. Herzing, M. Watanabe, J.K. Edwards, M. Conte, Z.-R. Tang, G.J. Hutchings, C.J. Kiely, Energy dispersive X-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope. Faraday Discuss. 138, 337 (2008)Google Scholar
  44. J.A. Hunt, D.B. Williams, Electron energy-loss spectrum-imaging. Ultramicroscopy 38, 47 (1991)Google Scholar
  45. I. Ishikawa, E. Okunishi, H. Sawada, Y. Okura, K. Yamazaki, T. Ishikawa, M. Kawazu, M. Hori, M. Terao, M. Kanno, S. Tanba, Y. Kondo, Development of a 200 kV atomic resolution analytical electron microscope. Microsc. Microanal. 15, Suppl. 2, 188 (2009)Google Scholar
  46. C. Jeanguillaume, C. Colliex, Spectrum-image: The next step in EELS digital acquisition and processing. Ultramicroscopy 28, 252 (1989)Google Scholar
  47. I.T. Jolliffe, Principal Component Analysis, 2nd edn. (Springer, New York, NY, 2002)Google Scholar
  48. D.C. Joy, in Scanning Electron Microscopy/1974, vol I, ed. by O. Johari, SEM parameters and their measurement (IIT Research Institute, Chicago, IL, 1974)Google Scholar
  49. D.C. Joy, D.M. Maher, in Scanning Electron Microscopy – 1977, vol 1, ed. by O. Johari, Sensitivity limits for thin specimen X-ray analysis (IITRI, Chicago, IL, 1977), p. 325Google Scholar
  50. D.C. Joy, A.D. Romig, Jr., J.I. Goldstein, Principles of Analytical Electron Microscopy (Plenum, New York, NY, 1986)Google Scholar
  51. V.J. Keast, D.B. Williams, Quantification of boundary segregation in the analytical electron microscope. J. Microsc. 199, 45 (2000)Google Scholar
  52. M.R. Keenan, P.G. Kotula, Accounting for Poisson noise in the multivariate analysis of ToF-SIMS spectrum images. Surf. Interface Anal. 36, 203 (2004)Google Scholar
  53. K. Kimoto T. Asaka, T. Nagai, M. Saito, Y. Matsui, K. Ishizuka, Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450, 702 (2007)Google Scholar
  54. P.G. Kotula, M.R. Keenan J.R. Michael, Automated analysis of SEM X-ray spectral images: a powerful new microanalysis tool. Microsc. Microanal. 9, 1 (2003)Google Scholar
  55. P.G. Kotula, J.R. Michael, M. Rohde, Results from two four-channel Si-drift detectors on an SEM: Conventional and annular geometries. Microsc. Microanal. 14(Suppl. 2), 116 (2008)Google Scholar
  56. O.L. Krivanek, P.D. Nellist, N. Dellby, M.F. Murfitt, Z. Szilagyi, Towards sub-0.5 Å electron beams. Ultramicroscopy 96, 229 (2003)Google Scholar
  57. P. Landon, P.J. Collier, A.F. Carley, D. Chadwick, A.J. Papworth, A. Burrows, C.J. Kiely, G.J. Hutchings, Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts. Phys. Chem. Chem. Phys. 5, 1917 (2003)Google Scholar
  58. P. Landon, P.J. Collier, A.J. Papworth, C.J. Kiely, G.J. Hutchings, Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. Chem. Commun. 18, 2058 (2002)Google Scholar
  59. J.M. LeBeau, S.D. Findlay, L.J. Allen, S. Stemmer, Quantitative Atomic Resolution Scanning Transmission Electron Microscopy. Phys. Rev. Lett. 100, 206101 (2008)Google Scholar
  60. S. Link, Z.L. Wang, M.A. El-Sayed, Alloy formation of gold−silver nanoparticles and the dependence of the plasmon absorption on their composition. J. Phys. Chem. B 103, 3529 (1999)Google Scholar
  61. L.M. Liz-Marzán, Nanometals: Formation and color. Mater. Today 7(2), 26 (2004)Google Scholar
  62. D.M. Maher, D.C. Joy, M.B. Ellington, N.J. Zaluzec, P.E. Mochel, in Analytical Electron Microscopy – 1981, ed. by R.H. Geiss, Relative accuracy of k-factor calculations for thin-film X-ray analysis (San Francisco Press, San Francisco, CA, 1981), p. 33Google Scholar
  63. E.R. Malinowski, Factor Analysis in Chemistry, 3rd edn. (Wiley, New York, NY, 2002)Google Scholar
  64. J.R. Michael, in Practical Analytical Electron Microscopy in Materials Science, 2nd edn. by D.B. Williams, (Philips Electron Optics Publishing Group, Mahwah, NJ, 1987), p. 82Google Scholar
  65. J.R. Michael, D.B. Williams, A consistent definition of probe size and spatial resolution in the analytical electron microscope. J. Microsc. 147, 289 (1987)Google Scholar
  66. J.R. Michael, D.B. Williams, C.F. Klein, R. Ayer, A consistent definition of probe size and spatial resolution in the analytical electron microscope. J. Microsc. 160, 41 (1990)Google Scholar
  67. K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653 (2008)Google Scholar
  68. C. Mory, M. Tence, C. Colliex, Theoretical study of the characteristics of the probe for a STEM with a field emission gun. J. Microsc. Spectrosc. Electron. 10, 381 (1985)Google Scholar
  69. D.A. Muller, L. Fitting-Kourkoutis, M. Murfitt, J.H. Song, H.Y. Wang, J. Silcox, N. Dellby, O.L. Krivanek, Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073 (2008)Google Scholar
  70. H. Müller, S. Uhlemann, P. Hartel, M. Haider, Advancing the hexapole Cs-corrector for the scanning transmission electron microscope. Microsc. Microanal. 12, 442 (2006)Google Scholar
  71. E. Munro, in Proceedings of the 8th International Congress on X-Ray Optics and Microanalysis, ed. by R. Ogilvie, D. Wittry, paper no. 19. Calculation of the combined effects of diffraction, spherical aberration, chromatic aberration and finite source size in the SEM (NBS, Washington, DC, 1977)Google Scholar
  72. J. Nelayah, L. Gu, W. Sigle, C.T. Koch, I. Pastoriza-Santos, L.M. Liz-Marzán, P.A. van Aken, Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss EFTEM imaging. Opt. Lett. 34, 1003 (2009)Google Scholar
  73. J. Nelayah, M. Kociak, O. Stéphan, F.J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L.M. Liz-Marzán, C. Colliex, Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348 (2007)Google Scholar
  74. P.D. Nellist, M.F. Chisholm, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z.S. Szilagyi, A.R. Lupini, A. Borisevich, W.H. Sides, Jr., S.J. Pennycook, Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741 (2004)Google Scholar
  75. D.E. Newbury, R.L. Myklebust, C.R. Swyt, The use of simulated standards in quantitative electron probe microanalysis with energy-dispersive X-ray spectrometry. Microbeam Anal. 4, 221 (1995)Google Scholar
  76. D.E. Newbury, D.B. Williams, J.I. Goldstein, C.E. Fiori, in Analytical Electron Microscopy – 1984, ed. by D.B. Williams, D.C. Joy, Observations on the calculation of kAB factors for analytical electron microscopy (San Francisco Press, San Francisco, CA, 1984), p. 276Google Scholar
  77. C.W. Oatley, W.C. Nixon, R.F.W. Pease, Scanning electron microscopy. Adv. Electron. Electron Phys. 21, 181 (1965)Google Scholar
  78. A.J. Papworth, M. Watanabe, D.B. Williams, X-ray spectral simulation and experimental detection of phosphorus segregation to grain boundaries in the presence of molybdenum. Ultramicroscopy 88, 265 (2001)Google Scholar
  79. J. Philibert, in Proceedings of the 3rd International Congress on X-ray Optics and Microanalysis, ed. by H.H. Pattee, V.E. Cosslett, A. Engström, A method for calculating the absorption correction in electron-probe microanalysis (Academic, New York, NY, 1963), p. 379Google Scholar
  80. S.D. Rasberry, Certificate of Analysis for Standard Reference Material 2063. National Bureau of Standards (now National Institute of Standards and Technology), Gaithersburg, MD (1987)Google Scholar
  81. S.J.B. Reed, The single-scattering model and spatial resolution in X-ray analysis of thin foils. Ultramicroscopy 7, 405 (1982)Google Scholar
  82. W.P. Reed, Certificate of Analysis for Standard Reference Material 2063a. National Institute of Standards and Technology, Gaithersburg, MD (1993)Google Scholar
  83. L. Reimer, H. Kohl, Transmission Electron Microscopy: Physics of Image Formation, 5th ed. (Springer, New York, NY, 2009)Google Scholar
  84. B. Rodríguez-González, A. Burrows, M. Watanabe, C.J. Kiely, L.M. Liz Marzán, Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties. J. Mater. Chem. 15, 1755 (2005)Google Scholar
  85. B. Rodríguez-González, A. Sánchez-Iglesias, M. Giersig, L.M. Liz-Marzán, AuAg bimetallic nanoparticles: formation, silica-coating and selective etching. Faraday Discuss. 125, 133 (2004)Google Scholar
  86. A.D. Romig Jr., J.I. Goldstein, in Microbeam Analysis – 1979, ed. by D.E. Newbury, Detectability limit and spatial resolution in STEM X-ray analysis: application to Fe-Ni alloys (San Francisco Press, San Francisco, CA, 1979), p. 124Google Scholar
  87. H. Rose, Correction of aperture aberrations in magnetic systems with threefold symmetry. Nucl. Inst. Methods 187, 187 (1981)Google Scholar
  88. C.J. Rossouw, C.T. Forwood, M.A. Gibson, P.A. Miller, Generation and absorption of characteristic X-rays under dynamical electron diffraction conditions. Micron 28, 125 (1997)Google Scholar
  89. H. Sawada, T. Sasaki, F. Hosokawa, S. Yuasa, M. Terao, M. Kawazoe, T. Nakamichi, T. Kaneyama, Y. Kondo, K. Kimoto, K. Suenaga, Correction of higher order geometrical aberration by triple 3-fold astigmatism field. J. Electron Microsc. 58, 341 (2009)Google Scholar
  90. P.H. Sheridan, Determination of experimental and theoretical kASi factors for a 200 kV analytical electron microscope. J. Electron Microsc. Tech. 11, 41 (1989)Google Scholar
  91. E.B. Steel, R.B. Marinenko, R.L. Myklebust, Quality assurance of energy dispersive spectrometry systems. Microsc. Microanal. 3(Suppl. 2), 903 (1997)Google Scholar
  92. E.B. Steel, D.E. Newbury, P.A. Pella, in Analytical Electron Microscopy – 1981, ed. by R.H. Geiss, Preparation of thin-film glass standards for analytical electron microscopy (San Francisco Press, San Francisco, CA, 1981), p. 65Google Scholar
  93. L. Strüder, N. Meidinger, D. Stotter, J. Kemmer, P. Lechner, P. Leutenegger, H. Soltau, F. Eggert, M. Rohde, T. Schulein, High-resolution X-ray spectroscopy close to room temperature. Microsc. Microanal. 4, 622 (1998)Google Scholar
  94. H. Tanaka, A. Sadakata, M. Watanabe, Y. Tomokiyo, N. Nishimura, M. Ozaki, Application of a JEM-2010FEF FEG-AEM for elemental analysis of microstructures in heat-resisting Cr steel. J. Electron Microsc. 51S, S127 (2002)Google Scholar
  95. L.E. Thomas, High spatial resolution in STEM X-ray microanalysis. Ultramicroscopy 9, 311 (1982)Google Scholar
  96. J.M. Titchmarsh, Detection of electron energy-loss edge shifts and fine structure variations at grain boundaries and interfaces. Ultramicroscopy 78, 241 (1999)Google Scholar
  97. J.M. Titchmarsh, S. Dumbill, Multivariate statistical analysis of FEG-STEM EDX spectra. J. Microsc. 184, 195 (1996)Google Scholar
  98. P. Trebbia, N. Bonnet, EELS elemental mapping with unconventional methods I. Theoretical basis: Image analysis with multivariate statistics and entropy concepts. Ultramicroscopy 34, 165 (1990)Google Scholar
  99. E. Van Cappellan, A. Schmitz, A simple spot-size versus pixel-size criterion for X-ray microanalysis of thin foils. Ultramicroscopy 41, 193 (1992)Google Scholar
  100. M. Varela, A.R. Lupini, K. van Benthem, A.Y. Borisevich, M.F. Chisholm, N. Shibata, E. Abe, S.J. Pennycook, Materials characterization in the aberration-corrected scanning transmission electron microscope. Annu. Rev. Mater. Res. 35, 539 (2005)Google Scholar
  101. M. Varela, M.P. Oxley, W. Luo, J. Tao, M. Watanabe, A.R. Lupini, S.T. Pantelides, S.J. Pennycook, Atomic resolution imaging of oxidation states in manganites. Phys. Rev. B 79, 085117 (2009)Google Scholar
  102. W.H. Vaughan, in Scanning Electron Microscopy/1976, vol I, ed. by O. Johari, The direct determination of SEM beam diameters (IIT Research Institute, Chicago, IL, 1976), p. 745Google Scholar
  103. H.S. von Harrach, P. Dona, B. Freitag, H. Soltau, A. Niculae, M. Rohde, An integrated silicon drift detector system for FEI Schottky field emission transmission electron microscopes. Microsc. Microanal. 15(Suppl. 2), 208 (2009)Google Scholar
  104. M. Watanabe, D.W. Ackland, A. Burrows, C.J. Kiely, D.B. Williams, O.L. Krivanek, N. Dellby, M.F. Murfitt, Z. Szilagyi, Improvements of X-ray analytical capabilities by spherical aberration correction in scanning transmission electron microscopy. Microsc. Microanal. 12, 515 (2006)Google Scholar
  105. M. Watanabe, Z. Horita, M. Nemoto, Absorption correction and thickness determination using the ζ factor in quantitative X-ray microanalysis. Ultramicroscopy 65, 187 (1996)Google Scholar
  106. M. Watanabe, M. Kanno, D.W. Ackland, C.J. Kiely, D.B. Williams, Applications of Electron Energy-Loss Spectrometry and Energy Filtering in an Aberration-Corrected JEM-2200FS STEM/TEM. Microsc. Microanal. 13(Suppl. 2), 1264 (2007)Google Scholar
  107. M. Watanabe, M. Kanno, E. Okunishi, Atomic-resolution elemental mapping by EELS and XEDS in aberration corrected STEM. JEOL News. 45, 8 (2010)Google Scholar
  108. M. Watanabe, E. Okunishi, K. Ishizuka, Analysis of Spectrum-Imaging Datasets in Atomic-Resolution Electron Microscopy. Microsc. Anal. 23(7), 5 (2009)Google Scholar
  109. M. Watanabe, H. Sawada, Ultramicroscopy (submitted)Google Scholar
  110. M. Watanabe, D.B. Williams, Atomic-level detection by X-ray microanalysis in the analytical electron microscope. Ultramicroscopy 78, 89 (1999)Google Scholar
  111. M. Watanabe, D.B. Williams, Quantification of elemental segregation to lath and grain boundaries in low-alloy steel by STEM X-ray mapping combined with the ζ-factor method. Z. Metallk. 94, 307 (2003)Google Scholar
  112. M. Watanabe, D.B. Williams, The quantitative analysis of thin specimens: a review of progress from the Cliff-Lorimer to the new ζ-factor methods. J. Microsc. 221, 89 (2006)Google Scholar
  113. M. Watanabe, D.B. Williams, Y. Tomokiyo, Comparison of detectability limits for elemental mapping by EF-TEM and STEM-XEDS. Micron 34, 173 (2003)Google Scholar
  114. O.C. Wells, in Scanning Electron Microscopy, Chapter 4 Electron-optical design of small-current probe-forming system (McGraw-Hill, New York, NY, 1974), p. 69Google Scholar
  115. D.B. Williams, C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science, 2nd edn. (Springer, New York, NY, 2009)Google Scholar
  116. D.B. Williams, J.R. Michael, J.I. Goldstein, A.D. Romig Jr., Definition of the spatial resolution of X-ray microanalysis in thin foils. Ultramicroscopy 47, 121 (1992)Google Scholar
  117. D.B. Williams, A.J. Papworth, M. Watanabe, High Resolution X-ray Mapping in the STEM. J. Electron Microsc. 51S, S113 (2002)Google Scholar
  118. J.E. Wood, D.B. Williams, J.I. Goldstein, An experimental and theoretical determination of kAFe factors for quantitative X-ray microanalysis in the analytical electron microscope. J. Microsc. 133, 255 (1984)Google Scholar
  119. T. Yaguchi, M. Konno, T. Kamino, M. Watanabe, Observation of three-dimensional elemental distributions of a Si device using a 360°-tilt FIB and the cold field-emission STEM system. Ultramicroscopy 108, 1603 (2008)Google Scholar
  120. Z.J. Zaluzec, Innovative instrumentation for analysis of nanoparticles: The π steradian detector. Microsc. Today 17(4), 56 (2009)Google Scholar
  121. N.J. Zaluzec, J.S. Iwanczyk, B.E. Patt, S. Barkan, L. Feng, Performance of a high count rate silicon drift X-ray detector on the ANL 300 kV advanced analytical electron microscope. Microsc. Microanal. 9(Suppl. 2), 892 (2003)Google Scholar
  122. N.J. Zaluzec, A.W. Nicholls, Experimental gun brightness measurements on a 300 kV CFEG. Microsc. Microanal. 4(Suppl. 2), 386 (1998)Google Scholar
  123. W. Zhou, E.I. Ross-Medgaarden, W.V. Knowles, M.S. Wong, I.E. Wachs, C.J. Kiely, Identification of active Zr–WOx clusters on a ZrO2 support for solid acid catalysts. Nat. Chem. 1, 722 (2009)Google Scholar
  124. T.O. Ziebold, Precision and sensitivity in electron microprobe analysis. Anal. Chem. 39, 858 (1967)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringLehigh UniversityBethlehemUSA

Personalised recommendations