Simulation and Interpretation of Images

  • Leslie J. Allen
  • Scott D. Findlay
  • Mark P. Oxley


In this chapter we discuss the simulation and interpretation of both Z-contrast and electron energy-loss spectroscopy images in scanning transmission electron microscopy.


Scanning Transmission Electron Microscopy Bloch Wave Conventional Transmission Electron Microscopy Scanning Transmission Electron Microscopy Image Carbon Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



L. J. Allen acknowledges support by the Australian Research Council. S. D. Findlay is supported by the Japanese Society for the Promotion of Science (JSPS). M.P. Oxley was supported by the Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy. We would like to thank our following collaborators for their considerable inputs into various parts of the work summarized in this chapter: G. Behan, A. L. Bleloch, M. Bosman, E. C. Cosgriff, A. J. D’Alfonso, C. Dwyer, J. L. García-Muñoz, V. J. Keast, A. I. Kirkland, J. M. LeBeau, P. D. Nellist, S. Stemmer and P. Wang.


  1. L.J. Allen, New directions for chemical maps. Nat. Nanotechnol. 3, 255–256 (2008)Google Scholar
  2. L.J. Allen, S.D. Findlay, A.R. Lupini, M.P. Oxley, S.J. Pennycook, Atomic-resolution electron energy loss spectroscopy imaging in aberration corrected scanning transmission electron microscopy. Phys. Rev. Lett. 91, 105503 (2003)Google Scholar
  3. L.J. Allen, S.D. Findlay, M.P. Oxley, C.J. Rossouw, Lattice-resolution contrast from a focused coherent electron probe. Part I. Ultramicroscopy 96, 47–63 (2003)Google Scholar
  4. L.J. Allen, S.D. Findlay, M.P. Oxley, C. Witte, N.J. Zaluzec, Modelling high-resolution electron microscopy based on core-loss spectroscopy. Ultramicroscopy 106, 1001–1011 (2006)Google Scholar
  5. L.J. Allen, A.J. D’Alfonso, S.D. Findlay, M.P. Oxley, M. Bosman, V.J. Keast, E.C. Cosgriff, G. Behan, P.D. Nellist, A.I. Kirkland, Theoretical interpretation of electron energy-loss spectroscopic images. Am. Inst. Phys. Conf. Proc. 999, 32–46 (2008)Google Scholar
  6. L.J. Allen, T.W. Josefsson, Inelastic scattering of fast electrons by crystals. Phys. Rev. B 52, 3184–3198 (1995)Google Scholar
  7. L.J. Allen, C.J. Rossouw, Effects of thermal diffuse scattering and surface tilt on diffraction and channeling of fast electrons in CdTe. Phys. Rev. B 39, 8313–8321 (1989)Google Scholar
  8. A. Amali, P. Rez, Theory of lattice resolution in high-angle annular dark-field images. Microsc. Microanal. 3, 28–46 (1997)Google Scholar
  9. G.R. Anstis: The influence of atomic vibrations on the imaging properties of atomic focusers. J. Microsc. 194, 105–111 (1999)Google Scholar
  10. G.R. Anstis, S.C. Anderson, C.R. Birkeland, D.J.H. Cockayne, Computer simulation methods for the analysis of high-angle annular dark-field (HAADF) images of AlxGa1−xAs at high resolution. Unpublished proceedings, 15th Pfefferkorn Conference, Silver Bay, New York, 1996Google Scholar
  11. G.R. Anstis, D.Q. Cai, D.J.H. Cockayne, Limitations on the s-state approach to the interpretation of sub-angstrom resolution electron microscope images and microanalysis. Ultramicroscopy 94, 309–327 (2003)Google Scholar
  12. I. Arslan, A. Bleloch, E.A. Stach, N.D. Browning, Atomic and electronic structure of mixed and partial dislocations in GaN. Phys. Rev. Lett. 94, 025504 (2005)Google Scholar
  13. I. Arslan, T.J.V. Yates, N.D. Browning, P.A. Midgley, Embedded nanostructures revealed in three dimensions. Science 309, 2195 (2005)Google Scholar
  14. P.E. Batson, Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity. Nature 366, 727–728 (1993)Google Scholar
  15. P.E. Batson, Characterizing probe performance in the aberration corrected STEM. Ultramicroscopy 106, 1104–1114 (2006)Google Scholar
  16. P.E. Batson, N. Dellby, O.L. Krivanek, Sub-angstrom resolution using aberration corrected electron optics. Nature 418, 617–620 (2002)Google Scholar
  17. D.M. Bird: Theory of zone axis electron diffraction. J. Electron Microsc. Tech. 13, 77–97 (1989)Google Scholar
  18. A. Bleloch, U. Falke, M. Falke, High spatial resolution electron energy loss spectroscopy and imaging in an aberration corrected STEM. Microsc. Microanal. 9(Suppl. 3), 40–41 (2003)Google Scholar
  19. A.Y. Borisevich, A.R. Lupini, S.J. Pennycook, Depth sectioning with the aberration corrected scanning transmission electron microscope. P. Natl. Acad. Sci. 103, 3044–3048 (2006)Google Scholar
  20. M. Bosman, V.J. Keast, Optimizing EELS acquisition. Ultramicroscopy 108, 837–846 (2008)Google Scholar
  21. M. Bosman, V.J. Keast, J.L. García-Muñoz, A.J. D’Alfonso, S.D. Findlay, L.J. Allen, Two-dimensional mapping of chemical information at atomic resolution. Phys. Rev. Lett. 99, 086102 (2007)Google Scholar
  22. M. Bosman, M. Watanabe, D.T.L. Alexander, V.J. Keast, Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. Ultramicroscopy 106, 1024–1032 (2006)Google Scholar
  23. N.D. Browning, M.F. Chisholm, S.J. Pennycook, Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143–146 (1993), Corrigendum 444, 235 (2006)Google Scholar
  24. B.F. Buxton, J.E. Loveluck, J.W. Steeds, Bloch waves and their corresponding atomic and molecular orbitals in high energy electron diffraction. Philos. Mag. A 38, 259–278 (1978)Google Scholar
  25. E. Carlino, V. Grillo, Atomic-resolution quantitative composition analysis using scanning transmission electron microscopy Z-contrast experiments. Phys. Rev. B 71, 235303 (2005)Google Scholar
  26. D. Cherns, A. Howie, M.H. Jacobs, Characteristic X-ray production in thin crystals. Z. Naturforsch. A 28, 565–571 (1973)Google Scholar
  27. W. Coene, D. Van Dyck, Inelastic scattering of high-energy electrons in real space. Ultramicroscopy 33, 261–267 (1990)Google Scholar
  28. W. Coene, D. Van Dyck, M. Op de Beeck, J. Van Landuyt, Computational comparisons between the conventional multislice method and the third order multislice method for calculating high-energy electron diffraction and imaging. Ultramicroscopy 69, 219–240 (1997)Google Scholar
  29. E.C. Cosgriff, P.D. Nellist, A Bloch wave analysis of optical sectioning in aberrationcorrected STEM. Ultramicroscopy 107, 626–634 (2007)Google Scholar
  30. E.C. Cosgriff, M.P. Oxley, L.J. Allen, S.J. Pennycook, The spatial resolution of imaging using core-loss spectroscopy in the scanning transmission electron microscope. Ultramicroscopy 102, 317–326 (2005)Google Scholar
  31. J.M. Cowley, A.F. Moodie, The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Cryst. 10, 609–619 (1957)Google Scholar
  32. M.D. Croitoru, D. Van Dyck, S. Van Aert, S. Bals, J. Verbeeck, An efficient way of including thermal diffuse scattering in simulation of scanning transmission electron microscopic images. Ultramicroscopy 106, 933940 (2006)Google Scholar
  33. A.J. D’Alfonso, S.D. Findlay, M.P. Oxley, S.J. Pennycook, K. van Benthem, L.J. Allen, Depth sectioning in scanning transmission electron microscopy based on core-loss spectroscopy. Ultramicroscopy 108, 17–28 (2007)Google Scholar
  34. C. Dinges, A. Berger, H. Rose, Simulation of TEM images considering phonon and electronic excitations. Ultramicroscopy 60, 49–70 (1995)Google Scholar
  35. C. Dinges, H. Rose, Simulation of transmission and scanning transmission electron microscopic images considering elastic and thermal diffuse scattering. Scanning Microsc. 11, 277–286 (1997)Google Scholar
  36. K. Dörr, Ferromagnetic manganites: spin-polarized conduction versus competing interactions. J. Phys. D 39, R125–R150 (2006)Google Scholar
  37. S.L. Dudarev, L.M. Peng, M.J. Whelan, Correlations in space and time and dynamical diffraction of high-energy electrons by crystals. Phys. Rev. B 48, 13408–13429 (1993)Google Scholar
  38. C. Dwyer, Multislice theory of fast electron scattering incorporating atomic inner-shell ionization. Ultramicroscopy 104, 141–151 (2005)Google Scholar
  39. C. Dwyer, J. Etheridge, Scattering of A-scale electron probes in silicon. Ultramicroscopy 96, 343–360 (2003)Google Scholar
  40. C. Dwyer, S.D. Findlay, L.J. Allen, Multiple elastic scattering of core-loss electrons in atomic resolution imaging. Phys. Rev. B 77, 184107 (2008)Google Scholar
  41. R.F. Egerton, Electron energy-loss spectroscopy in the electron microscope, 2nd edn. (Plenum Press, New York, NY, 1996)Google Scholar
  42. U. Falke, A. Bleloch, M. Falke, Atomic structure of a (2×1) reconstructed NiSi2/Si(001) interface. Phys. Rev. Lett. 92, 116103 (2004)Google Scholar
  43. S.D. Findlay, in Theoretical aspects of scanning transmission electron microscopy. Ph.D. thesis, The University of Melbourne, Melbourne, 2005Google Scholar
  44. S.D. Findlay, L.J. Allen, M.P. Oxley, C.J. Rossouw, Lattice-resolution contrast from a focused coherent electron probe. Part II. Ultramicroscopy 96, 65–81 (2003)Google Scholar
  45. S.D. Findlay, M.P. Oxley, L.J. Allen, Modelling atomic-resolution scanning transmission electron microscopy images. Microsc. Microanal. 14, 48–59 (2008)Google Scholar
  46. S.D. Findlay, M.P. Oxley, S.J. Pennycook, L.J. Allen, Modelling imaging based on coreloss spectroscopy in scanning transmission electron microscopy. Ultramicroscopy 104, 126–140 (2005)Google Scholar
  47. L. Fitting, S. Thiel, A. Schmehl, J. Mannhart, D.A. Muller, Subtleties in ADF imaging and spatially resolved EELS: A case study of low-angle twist boundaries in SrTiO3. Ultramicroscopy 106, 1053–1061 (2006)Google Scholar
  48. S.P. Frigo, Z.H. Levine, N.J. Zaluzec, Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy. Appl. Phys. Lett. 81, 2112–2114 (2002)Google Scholar
  49. C. Frontera, García-Muñoz, J.L., M.A. García-Aranda, C. Ritter, A. Llobet, M. Respaud, J. Vanacken, Low-temperature charge and magnetic order in Bi0.5Sr0.5MnO3. Phys. Rev. B 64, 054401 (2001)Google Scholar
  50. García-Muñoz, J.L., C. Frontera, M.A. García-Aranda, A. Llobet, C. Ritter, High-temperature orbital and charge ordering in Bi1/2Sr1/2MnO3. Phys. Rev. B 63, 064415 (2001)Google Scholar
  51. V. Grillo, E. Carlino, A novel method for focus assessment in atomic resolution STEM HAADF experiments. Ultramicroscopy 106, 603–613 (2006)Google Scholar
  52. V. Grillo, E. Carlino, F. Glas, Influence of the static atomic displacement on atomic resolution Z-contrast imaging. Phys. Rev. B 77, 054103 (2008)Google Scholar
  53. C.R. Hall, P.B. Hirsch, Effect of thermal diffuse scattering on propagation of high energy electrons through crystals. Proc. Roy. Soc. London A 286, 158–177 (1965)Google Scholar
  54. P. Hartel, H. Rose, C. Dinges, Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63, 93–114 (1996)Google Scholar
  55. C. Hébert-Souche, P.H. Louf, P. Blaha, M. Nelhiebel, J. Luitz, P. Schattschneider, K. Schwarz, B. Jouffrey, The orientation-dependent simulation of ELNES. Ultramicroscopy 83, 9–16 (2000)Google Scholar
  56. S. Hillyard, R.F. Loane, J. Silcox, Annular dark-field imaging: Resolution and thickness effects. Ultramicroscopy 49, 14–25 (1993)Google Scholar
  57. S. Hillyard, J. Silcox, Thickness effects in ADF STEM zone axis images. Ultramicroscopy 52, 325–334 (1993)Google Scholar
  58. A. Howie, Hunting the Stobbs factor. Ultramicroscopy 98, 73–79 (2004)Google Scholar
  59. C.J. Humphreys, The scattering of fast electron by crystals. Rep. Prog. Phys. 42, 1825–1887 (1979)Google Scholar
  60. M.J. Hÿtch, W.M. Stobbs, Quantitative comparison of high resolution TEM images with image simulations. Ultramicroscopy 53, 191–203 (1994)Google Scholar
  61. K. Ishizuka, Prospects of atomic resolution imaging with an aberration-corrected STEM. J. Electron. Microsc. 50, 291–305 (2001)Google Scholar
  62. K. Ishizuka, FFT multislice method – the silver anniversary. Microsc. Microanal. 10, 34–40 (2004)Google Scholar
  63. E.M. James, N.D. Browning, Practical aspects of atomic resolution imaging and analysis in STEM. Ultramicroscopy 78, 125–139 (1999)Google Scholar
  64. D.E. Jesson, S.J. Pennycook, Incoherent imaging of thin specimens using coherently scattered electrons. Proc. R. Soc. Lond. A 441, 261–281 (1993)Google Scholar
  65. T.W. Josefsson, L.J. Allen, Diffraction and absorption of inelastically scattered electrons for K-shell ionization. Phys. Rev. B 53, 2277–2285 (1996)Google Scholar
  66. K. Kimoto, T. Asaka, T. Nagai, M. Saito, Y. Matsui, K. Ishizuka, Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450, 702–704 (2007)Google Scholar
  67. K. Kimoto, K. Ishizuka,Y. Matsui, Decisive factors for realizing atomic-column resolution. Micron 39, 257–262 (2008)Google Scholar
  68. E.J. Kirkland, Advanced computing in electron microscopy (Plenum Press, New York, NY and London, 2nd Ed. 2010)Google Scholar
  69. E.J. Kirkland, R.F. Loane, J. Silcox, Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy 23, 77–96 (1987)Google Scholar
  70. D.O. Klenov, S.D. Findlay, L.J. Allen, S. Stemmer, Influence of orientation on the contrast of high-angle annular dark-field images of silicon. Phys. Rev. B 76, 014-111 (2007)Google Scholar
  71. D.O. Klenov, S. Stemmer, Contributions to the contrast in experimental high-angle annular dark-field images. Ultramicroscopy 106, 889–901 (2006)Google Scholar
  72. O.L. Krivanek, G.J. Corbin, N. Dellby, B.F. Elston, R.J. Keyse, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, J.W. Woodruff, An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179–195 (2008)Google Scholar
  73. O.L. Krivanek, N. Dellby, A.R. Lupini, Towards sub-A electron beams. Ultramicroscopy 78, 1–11 (1999)Google Scholar
  74. H. Kohl, H. Rose, Theory of image formation by inelastic scattered electrons in the electron microscope. Adv. Electron. Electron. Phys. 65, 173–227 (1985)Google Scholar
  75. Y. Kotaka, T. Yamazaki, Y. Kikuchi, K. Watanabe, Incoherent high-resolution Z-contrast imaging of silicon and gallium arsenide using HAADF-STEM. In Materials Research Society Symposium Proceedings, ed. By J. Bentley, I. Petrov, U. Dahmen, C. Allen (Materials Research Society, Warrendale, PA, 2001), pp. 185–190Google Scholar
  76. J.M. LeBeau, S.D. Findlay, L.J. Allen, S. Stemmer, Quantitative atomic resolution scanning transmission electron microscopy. Phys. Rev. Lett. 100, 206101 (2008)Google Scholar
  77. J.M. LeBeau, S. Stemmer, Experimental quantification of annular dark-field images in scanning transmission electron microscopy. Ultramicroscopy 108, 1653–1658 (2008)Google Scholar
  78. Z.Y. Li, N.P. Young, M. Di Vece, S. Palomba, R.E. Palmer, A.L. Bleloch, B.C. Curley, R.L. Johnson, J. Jiang, J. Yuan, Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451, 46 (2008)Google Scholar
  79. R.F. Loane, P. Xu, J. Silcox, Thermal vibrations in convergent-beam electron diffraction. Acta Cryst. A47, 267–278 (1991)Google Scholar
  80. R.F. Loane, P. Xu, J. Silcox, Incoherent imaging of zone axis crystals with ADF STEM. Ultramicroscopy 40, 121–138 (1992)Google Scholar
  81. S.E. Maccagnano-Zacher, K.A. Mkhoyan, E. Kirkland, J. Silcox, Effects of tilt on high-resolution ADF-STEM imaging. Ultramicroscopy 108, 718–726 (2008)Google Scholar
  82. V.W. Maslen, On the role of inner-shell ionization in the scattering of fast electrons by crystals. Philos. Mag. B 55, 491–496 (1987)Google Scholar
  83. P.A. Midgley, M. Weyland, 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413–431 (2003)Google Scholar
  84. K.A. Mkhoyan, S.E. Maccagnano-Zacher, M.G. Thomas, J. Silcox, Critical role of inelastic interactions in quantitative electron microscopy. Phys. Rev. Lett. 100, 025503 (2008)Google Scholar
  85. D.A. Muller, B. Edwards, E.J. Kirkland, J. Silcox, Simulation of thermal diffuse scattering including a detailed phonon dispersion curve. Ultramicroscopy 86, 371–380 (2001)Google Scholar
  86. D.A. Muller, L. Fitting Kourkoutis, M. Murfitt, J.H. Song, H.Y. Hwang, J. Silcox, N. Dellby, O.L. Krivanek, Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008)Google Scholar
  87. D.A. Muller, J. Silcox, Delocalization in inelastic scattering. Ultramicroscopy 59, 195–213 (1995)Google Scholar
  88. D.A. Muller, T. Sorsch, S. Moccio, F.H. Baumann, K. Evans-Lutterodt, G. Timp, The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758–761 (1999)Google Scholar
  89. D.A. Muller, Y. Tzou, R. Raj, J. Silcox, Mapping sp2 and sp3 states of carbon at subnanometre spatial resolution. Nature 366, 725–727 (1993)Google Scholar
  90. H. Müller, H. Rose, P. Schorsch, A coherence function approach to image simulation. J. Microsc. 190, 73–88 (1998)Google Scholar
  91. P.D. Nellist, G. Behan, A.I. Kirkland, C.J.D. Hetherington, Confocal operation of a transmission electron microscope with two aberration correctors. Appl. Phys. Lett. 89, 124105 (2006)Google Scholar
  92. P.D. Nellist, M.F. Chisholm, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z.S. Szilagyi, A.R. Lupini, A. Borisevich, W.H. Sides Jr, S.J. Pennycook, Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741 (2004)Google Scholar
  93. P.D. Nellist, S.J. Pennycook, Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78, 111–124 (1999)Google Scholar
  94. P.D. Nellist, J.M. Rodenburg, Beyond the conventional information limit: the relevant coherence function. Ultramicroscopy 54, 61–74 (1994)Google Scholar
  95. E. Okunishi, H. Sawada, Y. Kondo, M. Kersker, Atomic resolution elemental map of EELS with a Cs corrected STEM. Microsc. Microanal. 12(Supp. 2), 1150–1151 (2006)Google Scholar
  96. M.P. Oxley, E.C. Cosgriff, L.J. Allen, Nonlocality in imaging. Phys. Rev. Lett. 94, 203906 (2005)Google Scholar
  97. M.P. Oxley, M. Varela, T.J. Pennycook, K. van Benthem, S.D. Findlay, A.J. D’Alfonso, L.J. Allen, S.J. Pennycook: Interpreting atomic-resolution spectroscopic images. Phys. Rev. B 76, 064303 (2007)Google Scholar
  98. Y. Peng, P.D. Nellist, S.J. Pennycook, HAADF-STEM imaging with sub-angstrom probes: A full Bloch wave analysis. J. Electron Microsc. 53, 257–266 (2004)Google Scholar
  99. S.J. Pennycook, Delocalization corrections for electron channeling analysis. Ultramicroscopy 26, 239–248 (1988)Google Scholar
  100. S.J. Pennycook, D.E. Jesson, High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 14–38 (1991)Google Scholar
  101. L.C. Qin, K. Urban, Electron diffraction and lattice image simulations with the inclusion of HOLZ reflections. Ultramicroscopy 33, 159–166 (1990)Google Scholar
  102. C.J. Rossouw, L.J. Allen, S.D. Findlay, M.P. Oxley, Channelling effects in atomic resolution STEM. Ultramicroscopy 96, 299–312 (2003)Google Scholar
  103. D.K. Saldin, P. Rez, The theory of the excitation of atomic inner-shells in crystals by fast electrons. Philos. Mag. B 55, 481–489 (1987)Google Scholar
  104. P. Schattschneider, C. Hébert, B. Jouffrey, Orientation dependence of ionization edges in EELS. Ultramicroscopy 86, 343–353 (2001)Google Scholar
  105. P. Schattschneider, M. Nelhiebel, H. Souchay, B. Jouffrey, The physical significance of the mixed dynamic form factor. Micron 31, 333–345 (2000)Google Scholar
  106. J. Silcox, P. Xu, R.F. Loane, Resolution limits in annular dark field STEM. Ultramicroscopy 47, 173–186 (1992)Google Scholar
  107. J.C.H. Spence, Absorption spectroscopy with sub-angstrom beams: ELS in STEM. Rep. Prog. Phys. 69, 725–758 (2006)Google Scholar
  108. A. Thust, The Stobbs factor in HRTEM: Hunt for a phantom? in Proceedings of 14th European Microscopy Conference, Aachen, Germany, pp. 163–164 (2008)Google Scholar
  109. K. van Benthem, A.R. Lupini, M. Kim, H.S. Baik, S.J. Doh, J. Lee, M.P. Oxley, S.D. Findlay, L.J. Allen, J.T. Luck, S.J. Pennycook, Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl. Phys. Lett. 87, 34104 (2005)Google Scholar
  110. K. van Benthem, A.R. Lupini, M.P. Oxley, S.D. Findlay, L.J. Allen, S.J. Pennycook, Three-dimensional ADF imaging of individual atoms by through-focal series scanning transmission electron microscopy. Ultramicroscopy 106, 1062–1068 (2006)Google Scholar
  111. D. Van Dyck, Image calculation in high-resolution electron microscopy: problems, progress, and prospects. Adv. Electron. Electron. Phys. 65, 295–355 (1985)Google Scholar
  112. G. Van Tendeloo, O.I. Lebedev, M. Hervieu, B. Raveau, Structure and microstructure of colossal magnetoresistant materials. Rep. Prog. Phys. 67, 1315–1365 (2004)Google Scholar
  113. M. Varela, S.D. Findlay, A.R. Lupini, H.M. Christen, A.Y. Borisevich, N. Dellby, O.L. Krivanek, P.D. Nellist, M.P. Oxley, L.J. Allen, S.J. Pennycook, Spectroscopic imaging of single atoms within a bulk solid. Phys. Rev. Lett. 92, 095502 (2004)Google Scholar
  114. M. Varela, A. Lupini, K. van Benthem, A. Borisevich, M. Chisholm, N. Shibata, E. Abe, S. Pennycook, Materials characterization in the aberration-corrected scanning transmission electron microscope. Annu. Rev. Mater. Res. 35, 539–569 (2005)Google Scholar
  115. P.M. Voyles, D.A. Muller, J.L. Grazul, P.H. Citrin, H.J.L. Gossmann, Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416, 826–829 (2002)Google Scholar
  116. Z.L. Wang, The ‘frozen-lattice’ approach for incoherent phonon excitation in electron scattering. How accurate is it? Acta Cryst. A54, 460–467 (1998)Google Scholar
  117. S. Wang, A.Y. Borisevich, S.N. Rashkeev, M.V. Glazgoff, K. Sohlberg, S.J. Pennycook, S.T. Pantelides, Dopants adsorbed as single atoms prevent degradation of catalysis. Nat. Mater. 3, 143–146 (2004)Google Scholar
  118. P. Wang, A.J. D’Alfonso, S.D. Findlay, L.J. Allen, A.L. Bleloch, Contrast reversal in atomic-resolution chemical mapping. Phys. Rev. Lett. 101, 236102 (2008)Google Scholar
  119. K. Watanabe, E. Asano, T. Yamazaki, Y. Kikuchi, I. Hashimoto, Symmetries in BF and HAADF STEM image calculations. Ultramicroscopy 102, 13–21 (2004)Google Scholar
  120. K. Watanabe, T. Yamazaki, Y. Kikuchi, Y. Kotaka, M. Kawasaki, I. Hashimoto, M. Shiojiri, Atomic-resolution incoherent high-angle annular dark field STEM images of Si(011). Phys. Rev. B 63, 085316 (2001)Google Scholar
  121. A. Weickenmeier, H. Kohl, The influence of anisotropic thermal vibrations on absorptive form factors for high-energy electron diffraction. Acta Cryst. A54, 283–289 (1998)Google Scholar
  122. H.L. Xin, V. Intaraprasonk, D.A. Muller, Depth sectioning of individual dopant atoms with aberration-corrected scanning transmission electron microscopy. Appl. Phys. Lett. 92, 013125 (2008)Google Scholar
  123. T. Yamazaki, M. Kawasaki, K. Watanabe, I. Hashimoto, M. Shiojiri, Artificial bright spots in atomic-resolution high-angle annular dark field STEM images. J. Electron. Microsc. 50, 517–521 (2001)Google Scholar
  124. H. Yoshioka, Effect of inelastic waves on electron diffraction. J. Phys. Soc. Japan 12, 618–628 (1957)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Leslie J. Allen
    • 1
  • Scott D. Findlay
    • 2
  • Mark P. Oxley
    • 3
    • 4
  1. 1.School of PhysicsUniversity of MelbourneMelbourneAustralia
  2. 2.Institute of Engineering InnovationThe University of TokyoTokyoJapan
  3. 3.Department of Physics and AstronomyVanderbilt UniversityNashvilleUSA
  4. 4.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations