The Principles of STEM Imaging

  • Peter D. Nellist


The principles underlying imaging in the scanning transmission electron microscope are described. Particular focus is made on bright-field and annular dark-field imaging modes to illustrate the difference between coherent and incoherent imaging. In the case of annular dark-field imaging, the effects of dynamical diffraction and thermal diffuse scattering are discussed. The extension to three-dimensional imaging by optical sectioning is included, with particular reference to resolution limits and the bounds of transfer.


Scanning Transmission Electron Microscope Detector Plane Bloch Wave Partial Coherence Scanning Transmission Electron Microscope Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to thank the many colleagues and collaborators that have been involved in furthering our understanding of STEM imaging. P.D.N. acknowledges support from the Leverhulme Trust (F/08749/B), Intel Ireland, and the Engineering and Physical Sciences Research Council (EP/F048009/1).


  1. G. Ade, On the incoherent imaging in the scanning transmission electron microscope. Optik 49, 113–116 (1977)Google Scholar
  2. L.J. Allen, S.D. Findlay, M.P. Oxley, C.J. Rossouw, Lattice-resolution contrast from a focused coherent electron probe. Part I. Ultramicroscopy 96, 47–63 (2003)CrossRefGoogle Scholar
  3. A. Amali, P. Rez, Theory of lattice resolution in high-angle annular dark-field images. Microsc. Microanal. 3, 28–46 (1997)Google Scholar
  4. G. Behan, E.C. Cosgriff, A.I. Kirkland, P.D. Nellist, Three-dimensional imaging by optical sectioning in the aberration-corrected scanning transmission electron microscope. Philos. Trans. R. Soc. Lond. A 367, 3825–3844 (2009)CrossRefGoogle Scholar
  5. A.Y. Borisevich, A.R. Lupini, S.J. Pennycook, Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc. Natl. Acad. Sci. 103, 3044–3048 (2006)CrossRefGoogle Scholar
  6. N.D. Browning, M.F. Chisholm, S.J. Pennycook, Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143–146 (1993)CrossRefGoogle Scholar
  7. E.C. Cosgriff, A.J. D’Alfonso, L.J. Allen, S.D. Findlay, A.I. Kirkland, P.D. Nellist, Three dimensional imaging in double aberration-corrected scanning confocal electron microscopy. Part I: Elastic scattering. Ultramicroscopy 108, 1558–1566 (2008)CrossRefGoogle Scholar
  8. J.M. Cowley, Image contrast in a transmission scanning electron microscope. Appl. Phys. Lett. 15, 58–59 (1969)CrossRefGoogle Scholar
  9. J.M. Cowley, Coherent interference in convergent-beam electron diffraction & shadow imaging. Ultramicroscopy 4, 435–450 (1979)CrossRefGoogle Scholar
  10. J.M. Cowley, Coherent interference effects in SIEM and CBED. Ultramicroscopy 7, 19–26 (1981)CrossRefGoogle Scholar
  11. A.V. Crewe, The physics of the high-resolution STEM. Rep. Progr. Phys. 43, 621–639 (1980)CrossRefGoogle Scholar
  12. A.V. Crewe, D.N. Eggenberger, J. Wall, L.M. Welter, Electron gun using a field emission source. Rev. Sci. Instrum. 39, 576–583 (1968)CrossRefGoogle Scholar
  13. A.V. Crewe, J. Wall, A scanning microscope with 5 Å resolution. J. Mol. Biol. 48, 375–393 (1970)CrossRefGoogle Scholar
  14. A.J. D’Alfonso, E.C. Cosgriff, S.D. Findlay, G. Behan, A.I. Kirkland, P.D. Nellist, L.J. Allen, Three dimensional imaging in double aberration-corrected scanning confocal electron microscopy. Part II: Inelastic scattering. Ultramicroscopy 108, 1567–1578 (2008)CrossRefGoogle Scholar
  15. N. de Jonge, R. Sougrat, B.M. Northan, S.J. Pennycook, Three-dimensional scanning transmission electron microscopy of biological specimens. Microsc. Microanal. 16, 54–63 (2010)CrossRefGoogle Scholar
  16. N.H. Dekkers, H. de Lang, Differential phase contrast in a STEM. Optik 41, 452–456 (1974)Google Scholar
  17. C. Dinges, A. Berger, H. Rose, Simulation of TEM images considering phonon and electron excitations. Ultramicroscopy 60, 49–70 (1995)CrossRefGoogle Scholar
  18. A.M. Donald, A.J. Craven, A study of grain boundary segregation in Cu–Bi alloys using STEM. Philos. Mag. A 39, 1–11 (1979)CrossRefGoogle Scholar
  19. C. Dwyer, J. Etheridge, Scattering of Å-scale electron probes in silicon. Ultramicroscopy 96, 343–360 (2003)CrossRefGoogle Scholar
  20. H.M.L. Faulkner, J.M. Rodenburg, Moveable aperture lensless transmission microscopy: A novel phase retrieval algorithm. Phys. Rev. Lett. 93, 023903 (2004)CrossRefGoogle Scholar
  21. S.D. Findlay, L.J. Allen, M.P. Oxley, C.J. Rossouw, Lattice-resolution contrast from a focused coherent electron probe. Part II. Ultramicroscopy 96, 65–81 (2003)CrossRefGoogle Scholar
  22. B.R. Frieden, Optical transfer of the three-dimensional object. J. Opt. Soc. Am. 57, 36–41 (1967)Google Scholar
  23. S.J. Haigh, H. Sawada, A.I. Kirkland, Atomic structure imaging beyond conventional resolution limits in the transmission electron microscope. Phys. Rev. Lett. 103, 126101 (2009)CrossRefGoogle Scholar
  24. P. Hartel, H. Rose, C. Dinges, Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63, 93–114 (1996)CrossRefGoogle Scholar
  25. A. Howie, Image contrast and localised signal selection techniques. J. Microsc. 117, 11–23 (1979)CrossRefGoogle Scholar
  26. C.J. Humphreys, E.G. Bithell, in Electron Diffraction Techniques, vol. 1, ed. by J.M. Cowley (OUP, New York, NY, 1992), pp. 75–151Google Scholar
  27. D.E. Jesson, S.J. Pennycook, Incoherent imaging of thin specimens using coherently scattered electrons. Proc. R. Soc. (Lond.) Ser. A 441, 261–281 (1993)CrossRefGoogle Scholar
  28. D.E. Jesson, S.J. Pennycook, Incoherent imaging of crystals using thermally scattered electrons. Proc. Roy. Soc. (Lond.) Ser. A 449, 273–293 (1995)CrossRefGoogle Scholar
  29. E.J. Kirkland, R.F. Loane, J. Silcox, Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy 23, 77–96 (1987)CrossRefGoogle Scholar
  30. R.F. Loane, P. Xu, J. Silcox, Thermal vibrations in convergent-beam electron diffraction. Acta Crystallogr. A 47, 267–278 (1991)CrossRefGoogle Scholar
  31. R.F. Loane, P. Xu, J. Silcox, Incoherent imaging of zone axis crystals with ADF STEM. Ultramicroscopy 40, 121–138 (1992)CrossRefGoogle Scholar
  32. K. Mitsuishi, M. Takeguchi, H. Yasuda, K. Furuya, New scheme for calculation of annular dark-field STEM image including both elastically diffracted and TDS wave. J. Electron Microsc. 50, 157–162 (2001)CrossRefGoogle Scholar
  33. D.A. Muller, B. Edwards, E.J. Kirkland, J. Silcox, Simulation of thermal diffuse scattering including a detailed phonon dispersion curve. Ultramicroscopy 86, 371–380 (2001)CrossRefGoogle Scholar
  34. P.D. Nellist, G. Behan, A.I. Kirkland, C.J.D. Hetherington, Confocal operation of a transmission electron microscope with two aberration correctors. Appl. Phys. Lett. 89, 124105 (2006)CrossRefGoogle Scholar
  35. P.D. Nellist, B.C. McCallum, J.M. Rodenburg, Resolution beyond the ‘information limit’ in transmission electron microscopy. Nature 374, 630–632 (1995)CrossRefGoogle Scholar
  36. P.D. Nellist, S.J. Pennycook, Accurate structure determination from image reconstruction in ADF STEM. J. Microsc. 190, 159–170 (1998)CrossRefGoogle Scholar
  37. P.D. Nellist, S.J. Pennycook, Subangstrom resolution by underfocussed incoherent transmission electron microscopy. Phys. Rev. Lett. 81, 4156–4159 (1998)CrossRefGoogle Scholar
  38. P.D. Nellist, S.J. Pennycook, Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78, 111–124 (1999)CrossRefGoogle Scholar
  39. P.D. Nellist, S.J. Pennycook, The principles and interpretation of annular dark-field Z-contrast imaging. Adv. Imag. Electron Phys. 113, 148–203 (2000)Google Scholar
  40. P.D. Nellist, J.M. Rodenburg, Beyond the conventional information limit: the relevant coherence function. Ultramicroscopy 54, 61–74 (1994)CrossRefGoogle Scholar
  41. S.J. Pennycook, Z-contrast STEM for materials science. Ultramicroscopy 30, 58–69 (1989)CrossRefGoogle Scholar
  42. S.J. Pennycook, D.E. Jesson, High-resolution incoherent imaging of crystals. Phys. Rev. Lett. 64, 938–941 (1990)CrossRefGoogle Scholar
  43. D.D. Perovic, C.J. Rossouw, A. Howie, Imaging elastic strain in high-angle annular dark-field scanning transmission electron microscopy. Ultramicroscopy 52, 353–359 (1993)CrossRefGoogle Scholar
  44. Lord Rayleigh, On the theory of optical images with special reference to the microscope. Philos. Mag. 42(5), 167–195 (1896)Google Scholar
  45. J.M. Rodenburg, R.H.T. Bates, The theory of super-resolution electron microscopy via Wigner-distribution deconvolution. Philos. Trans. R. Soc. Lond. A 339, 521–553 (1992)CrossRefGoogle Scholar
  46. H. Rose, Phase contrast in scanning transmission electron microscopy. Optik 39, 416–436 (1974)Google Scholar
  47. J.C.H. Spence, Experimental High-Resolution Electron Microscopy (OUP, New York, NY, 1988)Google Scholar
  48. J.C.H. Spence, Convergent-beam nanodiffraction, in-line holography and coherent shadow imaging. Optik 92, 57–68 (1992)Google Scholar
  49. J.C.H. Spence, J.M. Cowley, Lattice imaging in STEM. Optik 50, 129–142 (1978)Google Scholar
  50. M.M.J. Treacy, J.M. Gibson, Atomic contrast transfer in annular dark-field images. J. Microsc. 180, 2–11 (1995)CrossRefGoogle Scholar
  51. M.M.J. Treacy, A. Howie, C.J. Wilson, Z contrast imaging of platinum and palladium catalysts. Philos. Mag. A 38, 569–585 (1978)CrossRefGoogle Scholar
  52. K. Van Benthem, A.R. Lupini, M. Kim, H.S. Baik, S. Doh, J.-H. Lee, M.P. Oxley, S.D. Findlay, L.J. Allen, J.T. Luck, S.J. Pennycook, Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl. Phys. Lett. 87, 034104 (2005)CrossRefGoogle Scholar
  53. P. Wang, G. Behan, M. Takeguchi, A. Hashimoto, K. Mitsuishi, M. Shimojo, A.I. Kirkland, P.D. Nellist, Nanoscale energy-filtered scanning confocal electron microscopy using a double-aberration-corrected transmission electron microscope. Phys. Rev. Lett. 104, 200801 (2010)Google Scholar
  54. Z. Yu, D.A. Muller, J. Silcox, Study of strain fields at a-Si/c-Si interface. J. Appl. Phys. 95, 3362–3371 (2004)CrossRefGoogle Scholar
  55. E. Zeitler, M.G.R. Thomson, Scanning transmission electron microscopy. Optik 31, 258–280 and 359–366 (1970)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of MaterialsUniversity of OxfordOxfordUK

Personalised recommendations