Variable Temperature Electron Energy-Loss Spectroscopy

  • Robert F. Klie
  • Weronika Walkosz
  • Guang Yang
  • Yuan Zhao


Atomic column-resolved electron energy-loss spectroscopy (EELS) in combination with Z-contrast imaging in a scanning transmission electron microscope (STEM) has become a very popular approach for characterizing the atomic and electronic structures of interfaces and defects in a wide range of solid-state materials. However, while the development of aberration correction in electron microscopes now allows for sub-Å spatial resolution to be achieved, many of these high-resolution experiments are currently limited to the ambient environment inside the microscope column. Yet, there is an increased interest in the areas of catalyst and functional oxide research to utilize in situ heating and cooling experiments with high spatial resolution. In this chapter, we will describe recent advances in atomic-resolution variable temperature EELS and discuss the required setup and techniques for achieving high-resolution variable temperature Z-contrast imaging and EELS. In particular, we will concentrate on three examples where in situ heating and cooling experiments in the temperature range between 10 and 700 K have been crucial to understanding the magnetic and electronic transport properties of functional oxide materials. We will also discuss some of the limitation of current heating/cooling sample holder technologies for high-resolution Z-contrast imaging and EELS.


Scanning Transmission Electron Microscope Heating Experiment Atomic Column Intermediate Spin State CoO2 Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Drs. A.W. Nicholls, Q. Ramasse, Q. Li, Y. Zhu, M. Varela, C. Leighton, and C.H. Ahn. This research was in part funded by a National Science Foundation CAREER award (Grant No. DMR-0846748).


  1. M. Abbate, J.C. Fuggle, A. Fujimori, L.H. Tjeng, C.T. Chen, R. Potze, G.A. Sawatzky, H. Eisaki, S. Uchida, Electronic-structure and spin-state transition of LaCoO 3. Phys. Rev. B 47, 16,124–16,130 (1993)CrossRefGoogle Scholar
  2. M. Abbate, F.M.F. de Groot, J.C. Fuggle, A. Fujimori, O. Strebel, F. Lopez, M. Domke, G. Kaindl, G.A. Sawatzky, M. Takano, Y. Takeda, H. Eisaki, S. Uchida, Controlled-valence properties of La 1− x Sr x FeO 3 and La 1− x Sr x MnO 3 studied by soft-X-ray absorption spectroscopy. Phys. Rev. B 46, 4511 (1992)CrossRefGoogle Scholar
  3. L.F. Allard, W.C. Bigelow, M. Jose-Yacaman, D.P. Nackashi, J. Damiano, S.E. Mick, A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures. Microsc. Res. Tech. 72, 208–215 (2009)CrossRefGoogle Scholar
  4. V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, G.A. Sawatzky, Density-functional theory and NiO photoemission spectra. Phys. Rev. B 48, 16, 929–16,934 (1993)Google Scholar
  5. K. Asai, P. Gehring, H. Chou, G. Shirane, Temperature-induced magnetism in LaCoO 3. Phys. Rev. B 40, 10,982–10,985 (1989)CrossRefGoogle Scholar
  6. R.T.K. Baker, In-situ electron microscopy studies of catalyst particle behavior. Catal. Rev. Sci. Eng. 19, 161–209 (1979)CrossRefGoogle Scholar
  7. P.E. Batson, Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity. Nature 366, 727–728 (1993)CrossRefGoogle Scholar
  8. G. Beni, C.F. Coll, Thermoelectric power in half-filled bands. Phys. Rev. B 11(2), 573–576 (1975)CrossRefGoogle Scholar
  9. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Technische Universität Wien (2001)Google Scholar
  10. G.A. Botton, C.C. Appel, A. Horsewell, W.M. Stobbs, Quantification of the EELS near-edge structures to study Mn doping in oxides. J. Microsc. Oxf. 180, 211–216 (1995)CrossRefGoogle Scholar
  11. E.D. Boyes, P.L. Gai, Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 67, 219–232 (1997)CrossRefGoogle Scholar
  12. D.N. Braski, High-vacuum evaporation stage for an electron microscope. J. Vac. Sci. Technol. 7, 164–168 (1970)CrossRefGoogle Scholar
  13. N.D. Browning, J.P. Buban, H.O. Moltaji, G. Duscher, S.J. Pennycook, R.P. Rodrigues, K. Johnson, V.P. Dravid, The influence of atomic structure on the formation of electrical barriers at grain boundaries in SrTiO 3. Appl. Phys. Lett. 74, 2638–2640 (1999)CrossRefGoogle Scholar
  14. N.D. Browning, M.F. Chrisholm, S.J. Pennycook, Atomic resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143–146 (1993)CrossRefGoogle Scholar
  15. N.D. Browning, H.O. Moltaji, J.P. Buban, Investigation of three-dimensional grain-boundary structures in oxides through multiple-scattering analysis of spatially resolved electron-energy-loss spectra. Phys. Rev. B 58, 8289–8300 (1998)CrossRefGoogle Scholar
  16. N.D. Browning, S.J. Pennycook, Direct experimental determination of the atomic structure at internal interfaces. J. Phys. D-Appl. Phys. 29, 1779–1798 (1996)CrossRefGoogle Scholar
  17. C. Chatfield, A.J. Collins, Introduction to Multivariate Statistical Analysis (Chapman and Hall, New York, NY, 1984)Google Scholar
  18. Y.M. Chiang, T. Takagi, Grain-boundary chemistry of barium-titanate and strontium-titanate. 1. High-temperature equilibrium space-charge. J. Am. Ceram. Soc. 73, 3278–3285 (1990)CrossRefGoogle Scholar
  19. F.M.F. de Groot, M. Grioni, J.C. Fuggle, J. Ghijsen, G.A. Sawatzky, H. Petersen, Oxygen 1s X-ray-absorption edges of transition-metal oxides. Phys. Rev. B 40, 5715–5723 (1989)CrossRefGoogle Scholar
  20. I. Denk, J. Claus, J. Maier, Electrochemical investigations of SrTiO 3 boundaries. J. Electrochem. Soc. 144, 3526–3536 (1997)CrossRefGoogle Scholar
  21. S.R. English, J. Wu, C. Leighton, Thermally excited spin-disorder contribution to the resistivity of LaCoO 3. Phys. Rev. B 65, 220407 (2002)Google Scholar
  22. D. Fuchs, C. Pinta, T. Schwarz, P. Schweiss, P. Nagel, S. Schuppler, R. Schneider, M. Merz, G. Roth, H.v. Lohneysen, Ferromagnetic order in epitaxially strained LaCoO 3 thin films. Phys. Rev. B 75, 144402 (2007)CrossRefGoogle Scholar
  23. R. Funahashi, I. Matsubara,  Thermoelectric properties of Pb- and Ca-doped (Bi 2 Sr 2 O 4)x CoO 2 whiskers. Appl. Phys. Lett. 79, 362–364 (2001)CrossRefGoogle Scholar
  24. P.L. Gai, Environmental high resolution electron microscopy of gas-catalyst reactions. Topics Catal. 8, 97–113 (1999)CrossRefGoogle Scholar
  25. P.L. Gai, Probing selective oxidation catalysis under reaction conditions by atomic scale environmental high resolution electron microscopy. Curr. Opin. Solid State Mater. Sci. 4, 63–73 (1999)CrossRefGoogle Scholar
  26. J.B. Goodenough, An interpretation of the magnetic properties of the perovskite-type mixed crystals. J. Phys. Chem. Solids 6, 287–297 (1958)CrossRefGoogle Scholar
  27. D. Grebille, H. Muguerra, O. Perez, E. Guilmeau, H. Rousseliere, R. Funahashi, Superspace crystal symmetry of thermoelectric misfit cobalt oxides and predicted structural models. Acta Crystallogr. Sect. B-Struct. Sci. 63, 373–383 (2007)CrossRefGoogle Scholar
  28. M. Green, E. Gusev, R. Degraeve, E. Garfunkel, Ultrathin (< 4 nm) SiO 2 and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits. J. Appl. Phys. 90(5), 2057–2121 (2001)CrossRefGoogle Scholar
  29. H. Gu, M. Ceh, Indirect EELS imaging reaching atomic scale – CaO planar faults in CaTiO 3. Ultramicroscopy 78, 221–231 (1999)CrossRefGoogle Scholar
  30. M. Haider, S. Uhlemann, J. Zach, Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy 81, 163–175 (2000)CrossRefGoogle Scholar
  31. M.W. Haverkort, Z. Hu, J.C. Cezar, T. Burnus, H. Hartmann, M. Reuther, C. Zobel, T. Lorenz, A. Tanaka, N.B. Brookes, H.H. Hsieh, H.J. Lin, C.T. Chen, L.H. Tjeng, Spin state transition in LaCoO 3 studied using soft X-ray absorption spectroscopy and magnetic circular dichroism. Phys. Rev. Lett. 97, 176405 (2006)CrossRefGoogle Scholar
  32. R.R. Heikes, R.C. Miller, R. Mazelsky, Magnetic and electrical anomalies in LaCoO 3. Physica 30, 1600–1608 (1964)CrossRefGoogle Scholar
  33. K. Heinemann, D.B. Rao, D.L. Douglass, Oxide nucleation on thin-films of copper during in-situ oxidation in an electron microscope. Oxidation Met 9, 379–400 (1975)CrossRefGoogle Scholar
  34. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1965)CrossRefGoogle Scholar
  35. B. Hong, H.L. Li, L.S. Ling, S. Tan, Y. Ying, L. Pi, Y.H. Zhang, Charge ordering phase submerged in ferromagnetic ordering phase in the Nd 0.5 Sr 0.5 MnO 3 system. EPL 80, 37002 (2007)CrossRefGoogle Scholar
  36. Y.F. Hu, W.D. Si, E. Sutter, Q. Li, In situ growth of c-axis-oriented Ca 3 Co 4 O 9 thin films on Si(100). Appl. Phys. Lett. 86, 082103 (2005)CrossRefGoogle Scholar
  37. M. Isobe, M. Shizuya, E. Takayama-Muromachi, Crystal structure and physical properties of a misfit-layered cobaltite (CaOH)1.14 CoO 2. J. Magn. Magn. Mater. 310, E269–E271 (2007)CrossRefGoogle Scholar
  38. Y. Ito, R.F. Klie, N.D. Browning, T.J. Mazanec, Atomic resolution analysis of the defect chemistry and microdomain structure of brownmillerite-type strontium cobaltite. J. Am. Ceram. Soc. 85, 969–976 (2002)CrossRefGoogle Scholar
  39. C. Jooss, L. Wu, T. Beetz, R.F. Klie, M. Beleggia, M.A. Schofield, S. Schramm, J. Hoffmann, Y. Zhu,  Polaron melting and ordering as key mechanisms for colossal resistance effects in manganites. Proc. Natl. Acad. Sci. USA 104, 13,597–13,602 (2007)CrossRefGoogle Scholar
  40. T. Kamino, T. Yaguchi, M. Konno, T. Hashimoto, In situ high temperature TEM observation of interaction between multi-walled carbon nanotube and in situ deposited gold nano-particles. J. Electron Microsc. 54, 461–465 (2005)CrossRefGoogle Scholar
  41. T. Kamino, T. Yaguchi, M. Konno, A. Watabe, T. Marukawa, T. Mima, K. Kuroda, H. Saka, S. Arai, H. Makino, Y. Suzuki, K. Kishita, Development of a gas injection/specimen heating holder for use with transmission electron microscope. J. Electron Microsc. 54, 497–503 (2005)CrossRefGoogle Scholar
  42. T. Kamino, T. Yaguchi, T. Sato, T. Hashimoto, Development of a technique for high resolution electron microscopic observation of nano-materials at elevated temperatures. J. Electron Microsc. 54, 505–508 (2005)CrossRefGoogle Scholar
  43. C.S. Kim, M. Kim, J.K. Furdyna, M. Dobrowolska, S. Lee, H. Rho, L.M. Smith, H.E. Jackson, E.M. James, Y. Xin, N.D. Browning, Evidence for 2d precursors and interdiffusion in the evolution of self-assembled CdSe quantum dots on ZnSe. Phys. Rev. Lett. 85, 1124–1127 (2000)CrossRefGoogle Scholar
  44. R.F. Klie, M. Bellegia, Y. Zhu, J.P. Buban, N.D. Browning, Atomic scale model of the grain boundary potential in perovskite oxides. Phys. Rev. B 68, 214,101 (2003)CrossRefGoogle Scholar
  45. R.F. Klie, N.D. Browning, Atomic scale characterization of oxygen vacancy segregation at SrTiO 3 grain boundaries. Appl. Phys. Lett. 77, 3737–3739 (2000)CrossRefGoogle Scholar
  46. R.F. Klie, N.D. Browning, Atomic scale characterization of vacancy ordering in oxygen conducting membranes. Microsc. Microanal. 8, 475–486 (2002)CrossRefGoogle Scholar
  47. R.F. Klie, N.D. Browning, A.R. Chowdhuri, C.G. Takoudis, Analysis of ultrathin SiO 2 interface layers in chemical vapor deposition of Al 2 O 3 on Si by in situ scanning transmission electron microscopy. Appl. Phys. Lett. 83, 1187–1189 (2003)CrossRefGoogle Scholar
  48. R.F. Klie, J.P. Buban, M. Varela, A. Franceschetti, C. Jooss, Y. Zhu, N.D. Browning, S.T. Pantelides, S.J. Pennycook, Enhanced current transport at grain boundaries in high-Tc superconductors. Nature 435, 475–478 (2005)CrossRefGoogle Scholar
  49. R.F. Klie, M.M. Disko, N.D. Browning, Atomic scale observations of the chemistry at the metal-oxide interface in heterogeneous catalysts. J. Catal. 205, 1–6 (2002)CrossRefGoogle Scholar
  50. R.F. Klie, T. Yuan, M. Tanase, G. Yang, Q. Ramasse, Direct measurement of ferromagnetic ordering in biaxially strained LaCoO 3 thin films. Appl. Phys. Lett. 96, 082510 (2010)CrossRefGoogle Scholar
  51. R.F. Klie, J.C. Zheng, Y. Zhu, M. Varela, J. Wu, C. Leighton, Direct measurement of the low-temperature spin-state transition in LaCoO 3. Phys. Rev. Lett. 99, 047203 (2007)CrossRefGoogle Scholar
  52. K.L. Kliewer, J.S. Koehler, Space charge in ionic crystals. I. General approach with application to NaCl. Phys. Rev. 140, A1226–A1240 (1965)Google Scholar
  53. M.A. Korotin, S.Y. Ezhov, I.V. Solovyev, V.I. Anisimov, D.I. Khomskii, G.A. Sawatzky, Intermediate-spin state and properties of LaCoO 3. Phys. Rev. B 54, 5309–5316 (1996)CrossRefGoogle Scholar
  54. O.L. Krivanek, P.D. Nellist, N. Dellby, M.F. Murfitt, Z. Szilagyi, Towards sub-0.5 Å electron beams. Ultramicroscopy 96, 229–237 (2003)CrossRefGoogle Scholar
  55. M.K. Kundmann, X. Chabert, K. Truong, O.L. Krivanek, EL/P Software for Macintosh II Computer (Gatan, Pleasanton, CA 1990)Google Scholar
  56. S. Lambert, H. Leligny, D. Grebille, Three forms of the misfit layered cobaltite [Ca 2 CoO 3][CoO 2]1.62 – a 4d structural investigation. J. Solid State Chem. 160, 322–331 (2001)CrossRefGoogle Scholar
  57. A.C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau, J. Hejtmanek, Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca 3 Co 4 O 9. Phys. Rev. B 62, 166–175 (2000)CrossRefGoogle Scholar
  58. I. Matsubara, R. Funahashi, M. Shikano, K. Sasaki, H. Enomoto, Cation substituted (Ca 2 CoO 3)x CoO 2 films and their thermoelectric properties. Appl. Phys. Lett. 80, 4729–4731 (2002)CrossRefGoogle Scholar
  59. M.M. McGibbon, N.D. Browning, M.F. Chisholm, A.J. McGibbon, S.J. Pennycook, V. Ravikumar, V.P. Dravid, Direct determination of grain-boundary atomic-structure in SrTiO 3. Science 266, 102–104 (1994)CrossRefGoogle Scholar
  60. M.M. McGibbon, N.D. Browning, A.J. McGibbon, S.J. Pennycook, The atomic structure of asymmetric [001] tilt boundaries in SrTiO 3. Philos. Mag. A 73, 625–641 (1996)CrossRefGoogle Scholar
  61. M. Medarde, C. Dallera, M. Grioni, J. Voigt, A. Podlesnyak, E. Pomjakushina, K. Conder, T. Neisius, O. Tjernberg, S.N. Barilo, Low-temperature spin-state transition in LaCoO 3 investigated using resonant X-ray absorption at the Co-K edge. Phys. Rev. B 73, 054424 (2006)Google Scholar
  62. Y. Miyazaki, M. Onoda, T. Oku, M. Kikuchi, Y. Ishii, Y. Ono, Y. Morii, T. Kajitani, Modulated structure of the thermoelectric compound [Ca 2 CoO 3]0.62 CoO 2. J. Phys. Soc. Jpn. 71, 491–497 (2002)CrossRefGoogle Scholar
  63. H.O. Moltaki, J.P. Buban, J.A. Zaborac, N.D. Browning, Simulating the oxygen K-edge spectrum from grain boundaries in ceramic oxides using the multiple scattering methodology. Micron 31, 381–99 (2000)CrossRefGoogle Scholar
  64. A.R. Moodenbaugh, B. Nielsen, S. Sambasivan, D.A. Fischer, T. Friessnegg, S. Aggarwal, R. Ramesh, R.L. Pfeffer, Hole-state density of La 1− x Sr−CoO 3− δ (0 ≤ x ≤ 0.5) across the insulator/metal phase boundary. Phys. Rev. B 61, 5666–5671 (2000)CrossRefGoogle Scholar
  65. H. Muguerra, D. Grebille, F. Bouree, Disordered misfit [Ca 2 CoO 3][CoO 2]1.62 structure revisited via a new intrinsic modulation. Acta Crystallogr. Sect. B-Struct. Sci. 64, 144–153 (2008)CrossRefGoogle Scholar
  66. D. Muller, T. Sorsch, S. Moccio, F. Baumann, K. Evans-Lutterodt, G. Timp, The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758–761 (1999)CrossRefGoogle Scholar
  67. D.A. Muller, L.F. Kourkoutis, M. Murfitt, J.H. Song, H.Y. Hwang, J. Silcox, N. Dellby, O.L. Krivanek, Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008)CrossRefGoogle Scholar
  68. D.A. Muller, Y. Tzou, R. Raj, J. Silcox, Mapping sp 2 and sp 3 states of carbon at sub-nanometre spatial resolution. Nature 366, 725–727 (1993)CrossRefGoogle Scholar
  69. P.D. Nellist, M.F. Chisholm, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z.S. Szilagyi, A.R. Lupini, A. Borisevich, W.H. Sides, S.J. Pennycook, Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741 (2004)CrossRefGoogle Scholar
  70. A. Ohtomo, D.A. Muller, J.L. Grazul, H.Y. Hwang, Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature 419, 378–380 (2002)CrossRefGoogle Scholar
  71. N.H. Packan, D.N. Braski, Electron microscope in situ annealing study of voids induced by irradiation in aluminum. J. Nuclear Mater. 34, 307–314 (1970)CrossRefGoogle Scholar
  72. G.G. Parr, W.T. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, NY, 1989)Google Scholar
  73. D.M. Pease, A. Fasihuddin, M. Daniel, J.I. Budnick, Method of linearizing the 3d L3/L2 white line ratio as a function of magnetic moment. Ultramicroscopy 88, 1–16 (2001)CrossRefGoogle Scholar
  74. C. Qi, T. Akita, M. Okumura, M. Haruta,  Epoxidation of propylene over gold catalysts supported on non-porous silica. Appl. Catal. A 218, 81–89 (2001)CrossRefGoogle Scholar
  75. P.M. Raccah, J.B. Goodenough, First-order localized-electron ⇆ collective-electron transition in LaCoO 3. Phys. Rev. 155, 932 (1967)CrossRefGoogle Scholar
  76. P.G. Radaelli, S.W. Cheong, Structural phenomena associated with the spin-state transition in LaCoO 3. Phys. Rev. B 66, 094408 (2002)Google Scholar
  77. T. Riedl, T. Gemming, K. Wetzig, Extraction of EELS white-line intensities of manganese compounds: Methods, accuracy, and valence sensitivity. Ultramicroscopy 106, 284–291 (2006)CrossRefGoogle Scholar
  78. T. Saitoh, T. Mizokawa, A. Fujimori, M. Abbate, Y. Takeda, M. Takano, Electronic structure and magnetic states in La 1− x Sr x CoO 3 studied by photoemission and X-ray-absorption spectroscopy. Phys. Rev. B 56, 1290–1295 (1997)CrossRefGoogle Scholar
  79. M. Sankararaman, D. Perry, Valence determination of titanium and iron using electron-energy loss spectroscopy. J. Mater. Sci. 27, 2731–2733 (1992)CrossRefGoogle Scholar
  80. P. Schattschneider, S. Rubino, C. Hebert, J. Rusz, J. Kunes, P. Novak, E. Carlino, M. Fabrizioli, G. Panaccione, G. Rossi, Detection of magnetic circular dichroism using a transmission electron microscope. Nature 441, 486–488 (2006)CrossRefGoogle Scholar
  81. M.A. Senaris-Rodriguez, J.B. Goodenough, Magnetic and transport-properties of the system La 1− x Sr x CoO 3−δ (0 ≤ x ≤ 0.5). J. Solid State Chem. 118, 323–336 (1995)CrossRefGoogle Scholar
  82. R. Sharma, Design and applications of environmental cell transmission electron microscope for in situ observations of gas-solid reactions. Microsc. Microanal. 7, 494–506 (2001)Google Scholar
  83. R. Sharma, K. Weiss, Development of a TEM to study in situ structural and chemical changes at an atomic level during gas-solid interactions at elevated temperatures. Microsc. Res. Tech. 42, 270–280 (1998)CrossRefGoogle Scholar
  84. N. Shibata, S. Pennycook, T. Gosnell, G. Painter, W. Shelton, P. Becher, Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions. Nature 428, 730–733 (2004)CrossRefGoogle Scholar
  85. M. Shizuya, M. Isobe, Y. Baba, T. Nagai, M. Osada, K. Kosuda, S. Takenouchi, Y. Matsui, E. Takayama-Muromachi, New misfit-layered cobalt oxide (CaOH)1.14 CoO 2. J. Solid State Chem. 180, 249–259 (2007)CrossRefGoogle Scholar
  86. D.J. Singh, Electronic structure of NaCo 2 O 4. Phys. Rev. B 61, 13,397–13,402 (2000)Google Scholar
  87. K. Sun, J. Liu, N.D. Browning, Correlated atomic resolution microscopy and spectroscopy studies of Sn(Sb)O 2 nanophase catalysts. J. Catal. 205, 266–277 (2002a)CrossRefGoogle Scholar
  88. K. Sun, J. Liu, N. Browning, Direct atomic scale analysis of the distribution of Cu valence states in Cu/δ− Al 2 O 3 catalysts. Appl. Catal. B 38, 271–281 (2002b)CrossRefGoogle Scholar
  89. K. Sun, J. Liu, N. Nag, N. Browning, Studying the metal-support interaction in Pd/γ− Al 2 O 3 catalysts by atomic-resolution electron energy-loss spectroscopy. Catal. Lett. 84, 193–199 (2002c)CrossRefGoogle Scholar
  90. K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R.A. Dilanian, T. Sasaki, Superconductivity in two-dimensional CoO 2 layers. Nature 422, 53–55 (2003)CrossRefGoogle Scholar
  91. I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in NaCo 2 O 4 single crystals. Phys. Rev. B 56, 12, 685–12,687 (1997)Google Scholar
  92. M. Valkeapaa, Y. Katsumata, I. Asako, T. Motohashi, T.S. Chan, R.S. Liu, J.M. Chen, H. Yamauchi, M. Karppinen, Charge compensation and oxidation in Na x CoO 2− δ and Li x CoO 2 −δ studied by XANES. J. Solid State Chem. 180, 1608–1615 (2007)CrossRefGoogle Scholar
  93. M. Varela, S.D. Findlay, A.R. Lupini, H.M. Christen, A.Y. Borisevich, N. Dellby, O.L. Krivanek, P.D. Nellist, M.P. Oxley, L.J. Allen, S.J. Pennycook, Spectroscopic imaging of single atoms within a bulk solid. Phys. Rev. Lett. 92, 95502 (2004)CrossRefGoogle Scholar
  94. M. Varela, A.R. Lupini, K. van Benthem, A.Y. Borisevich, M.F. Chisholm, N. Shibata, E. Abe, S.J. Pennycook, Materials characterization in the aberration-corrected scanning transmission electron microscope. Ann. Rev. Mater. Res. 35, 539–569 (2005)CrossRefGoogle Scholar
  95. C. de Vaulx, M.H. Julien, C. Berthier, S. Hébert, V. Pralong, A. Maignan, Electronic correlations in CoO 2, the parent compound of triangular cobaltates. Phys. Rev. Lett. 98, 246402 (2007)CrossRefGoogle Scholar
  96. W. Walkosz, R.F. Klie, S. Ogut, A. Borisevich, P.F. Becher, S.J. Pennycook, J.C. Idrobo, Atomic resolution study of the interfacial bonding at Si 3 N 4/CeO 2−δ grain boundaries. Appl. Phys. Lett. 93, 053104 (2008)CrossRefGoogle Scholar
  97. Z.L. Wang, J. Bentley, N.D. Evans, Valence state mapping of cobalt and manganese using near-edge fine structures. Micron 31, 355–362 (2000)CrossRefGoogle Scholar
  98. G. Winkelman, C. Dwyer, T. Hudson, D. Nguyen-Manh, M. Doblinger, R. Satet, M. Hoffmann, D. Cockayne, Arrangement of rare-earth elements at prismatic grain boundaries in silicon nitride. Philos. Mag. Lett. 84, 755–762 (2004)CrossRefGoogle Scholar
  99. W.B. Wu, D.J. Huang, J. Okamoto, A. Tanaka, H.J. Lin, F.C. Chou, A. Fujimori, C.T. Chen, Orbital symmetry and electron correlation in Na x CoO 2. Phys. Rev. Lett. 94, 146,402–146,404 (2005)Google Scholar
  100. G.J. Xu, Thermoelectric properties of the Bi- and Na- substituted Ca 3 Co 4 O 9 system. Appl. Phys. Lett. 80, 3760–3762 (2002)CrossRefGoogle Scholar
  101. J.Q. Yan, J.S. Zhou, J.B. Goodenough, Ferromagnetism in LaCoO 3. Phys. Rev. B 70, 014402 (2004)CrossRefGoogle Scholar
  102. G. Yang, Q. Ramasse, R.F. Klie, Direct measurement of charge transfer in thermoelectric Ca 3 Co 4 O 9. Phys. Rev. B 78, 153109 (2008)CrossRefGoogle Scholar
  103. G. Yang, Q. Ramasse, R.F. Klie, Direct measurement of Co-ion spin state transitions in Ca 3 Co 4 O 9 using variable-temperature electron energy-loss spectroscopy. Appl. Phys. Lett. 94, 093112 (2009)Google Scholar
  104. A. Ziegler, J. Idrobo, M. Cinibulk, C. Kisielowski, N.D. Browning, R. Ritchie, Atomic-resolution observations of semicrystalline intergranular thin films in silicon nitride. Appl. Phys. Lett. 88, 041919 (2006)CrossRefGoogle Scholar
  105. A. Ziegler, J.C. Idrobo, M.K. Cinibulk, C. Kisielowski, N.D. Browning, R.O. Ritchie, Interface structure and atomic bonding characteristics in silicon nitride ceramics. Science 306, 1768–1770 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Robert F. Klie
    • 1
  • Weronika Walkosz
    • 1
  • Guang Yang
    • 1
  • Yuan Zhao
    • 1
  1. 1.Department of PhysicsUniversity of IllinoisChicagoUSA

Personalised recommendations