Atomic-Resolution STEM at Low Primary Energies

  • Ondrej L. Krivanek
  • Matthew F. Chisholm
  • Niklas Dellby
  • Matthew F. Murfitt


Aberration-corrected scanning transmission electron microscopes (STEMs) can now produce electron probes as small as 1 Å at 60 keV. This level of performance allows individual light atoms to be imaged in various novel materials including graphene, monolayer boron nitride, and carbon nanotubes. Operation at 60 keV avoids direct knock-on damage in such materials, but some radiation damage often remains, and limits the maximum usable electron dose. Elemental identification by electron energy loss spectroscopy (EELS) is then usefully supplemented by annular dark-field (ADF) imaging, for which the signal is much larger and the spatial resolution significantly better. Because of its strong dependence on the atomic number Z, ADF can be used to identify the chemical type of individual atoms, both heavy and light. We review the instrumental requirements for atomic resolution imaging at 60 keV and lower energies, and we illustrate the kinds of studies that have now become possible by ADF images of graphene, monolayer BN, and single-wall carbon nanotubes, and by ADF images and EEL spectra of carbon nanotubes containing nanopods filled with single atoms of Er. We then discuss likely future developments.


Primary Energy Scanning Transmission Electron Microscope Electron Energy Loss Spectroscopy Spherical Aberration Probe Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Steve Pennycook and the Oak Ridge National Laboratory for the use of Nion UltraSTEM after its installation, to David Geohegan, Valeria Nicolosi, and Kazu Suenaga for the provision of samples, to George Corbin, Chris Own, James Woodruff, and Zoltan Szilagyi for their part in the design and construction of the Nion UltraSTEM, and to Neil Bacon, Phil Batson, David Cockayne, Ray Egerton, David Muller, Peter Nellist, Steve Pennycook, Tim Pennycook, Peter Rez, John Spence and Mike Treacy for useful discussions. Research at Oak Ridge National Laboratory (MFC) was sponsored by the Materials Sciences and Engineering Division of the U.S. Department of Energy.


  1. N. Alem, R. Erni, C. Kisielowski, M.D. Rossell, W. Gannett, A. Zettl, Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys. Rev. B80, 155425 (2009)Google Scholar
  2. G.D. Archard, Two new simplified systems for the correction of spherical aberration in electron lenses. Proc. R. Soc. B68, 156–164 (1955)Google Scholar
  3. M. von Ardenne, in The Beginnings of Electron Microscopy. Advances in Electronics and Electron Physics, ed. by P.W. Hawkes, Suppl. 16 (Academic, London, 1985), pp. 1–21Google Scholar
  4. M. von Ardenne, Das Elektronen-Raster Mikroskop (The scanning electron microscope). Z. Tech. Phys 19, 407–416 (1938)Google Scholar
  5. M. von Ardenne, Elektronen Übermikroskopie (Springer, Berlin, 1940)Google Scholar
  6. N.J. Bacon, G.J. Corbin, N. Dellby, P. Hrncirik, O.L. Krivanek, M.F. Murfitt, Z.S. Szilagyi, A High-Performance 200 kV Cold Field Emission Electron Source. Proceedings 12th International Microscopy Congress (IFSM, Rio de Janeiro, 2010) pp. 240–241Google Scholar
  7. P.E. Batson, Low-workfunction field-emission source for high-resolution EELS. Proceedings 45th EMSA Meeting, ed. by G.W. Bailey (San Francisco Press, San Francisco, CA, 1987), pp. 132–133Google Scholar
  8. P.E. Batson, Characterizing probe performance in the aberration corrected STEM. Ultramicroscopy 106, 1104–1114 (2006)Google Scholar
  9. P.E. Batson, Control of parasitic aberrations in multipole optics. J. Electron. Microsc. 58, 123–130 (2009)Google Scholar
  10. P.E. Batson, N. Dellby, O.L. Krivanek, Sub-Ångström resolution using aberration corrected electron optics. Nature 418, 617–620 (2002)Google Scholar
  11. V. Beck, Hexapole spherical-aberration corrector. Optik 53, 241–245 (1979)Google Scholar
  12. V. Beck, A.V. Crewe, High resolution imaging properties of the STEM. Ultramicroscopy 1, 137–144 (1975)Google Scholar
  13. V. Beck, A.V. Crewe, A quadrupole–octupole corrector for a 100 keV STEM. Proc. 32nd EMSA Meeting, 578–579 (1976)Google Scholar
  14. G.M. Bond, I.M. Robertson, F.M. Zeides, H.K. Birnbaum, Sub-threshold electron irradiation damage in hydrogen-charged aluminium. Phil. Mag. A 55, 669 (1987)Google Scholar
  15. M. Bosman, V.J. Keast, J.L. García-Muñoz, A.J. D’Alfonso, S.D. Findlay, L.J. Allen, Two-dimensional mapping of chemical information at atomic resolution. Phys. Rev. Lett. 99, 086102 (2007)Google Scholar
  16. E.C. Cosgriff, M.P. Oxley, L.J. Allen, S.J. Pennycook, The spatial resolution of imaging using core-loss spectroscopy in the scanning transmission electron microscope. Ultramicroscopy 102, 317–326 (2005)Google Scholar
  17. A.V. Crewe, Direct imaging of single atoms and molecules using the STEM. Proceedings 47th Nobel Symposium, Chemica Scripta 14, 17–20 (1979)Google Scholar
  18. A.V. Crewe, in Cold Field Emission and the Scanning Transmission Electron Microscope, ed. by P.W. Hawkes. Advances in Imaging and Electron Physics, vol. 159. (Elsevier, Amsterdam, 2009), pp. 1–61Google Scholar
  19. A.V. Crewe, D. Kopf, A sextupole system for the correction of spherical aberration. Optik 5, 1–10 (1980)Google Scholar
  20. A.V. Crewe, D.N. Eggenberger, J. Wall, L.M. Welter, Electron gun using a field emission source. Rev. Sci. Inst. 39, 576–583 (1968a)Google Scholar
  21. A.V. Crewe, J. Wall, L.M. Welter, A high-resolution scanning transmission electron microscope. J. Appl. Phys. 39, 5861–5868 (1968b)Google Scholar
  22. A.V. Crewe, J. Wall, J. Langmore, Visibility of single atoms. Science 168, 1338–1340 (1970)Google Scholar
  23. N. Dellby, O.L. Krivanek, P.D. Nellist, P.E. Batson, A.R. Lupini, Progress in aberration-corrected scanning transmission electron microscopy. J. Electron. Microsc. 50, 177–185 (2001)Google Scholar
  24. J.H.M. Deltrap, Correction of spherical aberration with combined quadrupole-octopole units. Proc. EUREM-3 (Prague), 45 (1964a)Google Scholar
  25. J.H.M. Deltrap, Correction of spherical aberration of electron lenses. Ph.D. dissertation, University of Cambridge, 1964bGoogle Scholar
  26. R.F. Egerton, EELS in the Electron Microscope, 2nd edn. (Plenum Press, New York, NY, 1996)Google Scholar
  27. R.F. Egerton, Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. Ultramicroscopy 107, 575–586 (2006)Google Scholar
  28. R. Erni, M.D. Rossell, C. Kisielowski, U. Dahmen, Atomic-resolution imaging with a sub-50-pm electron probe. Phys. Rev. Lett. 102, 096101 (2009)Google Scholar
  29. P.L. Fejes (ed.), Proceedings of Cornell Specialist Workshop in Analytical Electron Microscopy, Cornell University, July 1978Google Scholar
  30. L. Fitting-Kourkoutis, From imaging individual atoms to atomic resolution 2D mapping of bonding. In Proceedings 12th International Microscopy Congress (IFSM, Rio de Janeiro, 2010), pp. 354–355Google Scholar
  31. J. Frank, Three-Dimensional Electron Microscopy of Macromolecular Assemblies (Oxford University Press, Oxford, 2006)Google Scholar
  32. H.L. Fraser, R.H. Geiss, M.S. Isaacson, D.C. Joy, D.M. Maher, J. Silcox (eds.), Proceedings of Cornell Specialist Workshop in Analytical Electron Microscopy, Cornell Univeristy, August 1976Google Scholar
  33. B. Freitag, G. Knippels, S. Kujawa, P.C. Tiemeijer, M. Van der Stam, D. Hubert, C. Kisielowski, P. Denes, A. Minor, U. Dahmen, First Performance Measurements and Application Results of a New High Brightness Schottky Field Emitter for HR-S/TEM at 80–300 kV Acceleration Voltage, ed. by M. Luysberg, K. Tillmann, T. Weirich. European Microscopy Congress, vol. 1: Instrumentation and Methods (2008), pp. 55–56Google Scholar
  34. A.K. Geim, Graphene: Status and prospects. Science 324, 1530–1534 (2009)Google Scholar
  35. Ç.Ö. Girit, J.C. Meyer, R. Erni, M.D. Rossell, C. Kisielowski, L. Yang, C.-H. Park, M.F. Crommie, M.L. Cohen, S.G. Louie, A. Zettl, Graphene at the edge: Stability and dynamics. Science 323, 1705–1708 (2009)Google Scholar
  36. M. Haider, P. Hartel, H. Müller, S. Uhlemann, J. Zach, Current and future aberration correctors for the improvement of resolution in electron microscopy. Phil. Trans. R. Soc. A 367, 3665–3682 (2009)Google Scholar
  37. M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban, Electron microscopy image enhanced. Nature 392, 768–769 (1998)Google Scholar
  38. D.F. Hardy, Combined Magnetic and Electrostatic Quadrupole Electron Lenses. Ph.D. dissertation, University of Cambridge, 1967Google Scholar
  39. H.S. von Harrach, in Cold Field Emission and the Scanning Transmission Electron Microscope, ed. by P.W. Hawkes. Advances in Imaging and Electron Physics, vol. 159 (Elsevier, Amsterdam, 2009), pp. 287–323Google Scholar
  40. P. Hartel, H. Rose, C. Dignes, Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63, 93–114 (1996)Google Scholar
  41. A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, S. Iijima, Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004)Google Scholar
  42. P.W. Hawkes (ed.), Aberration-Corrected Electron Microscopy. Advances in Imaging and Electron Physics, vol. 153 (Elsevier, Amsterdam, 2008)Google Scholar
  43. P.W. Hawkes (ed.), Cold Field Emission and the Scanning Transmission Electron Microscope. Advances in Imaging and Electron Physics, vol. 159 (Elsevier, Amsterdam, 2009a)Google Scholar
  44. P.W. Hawkes, Aberration correction past and present. Phil. Trans. R. Soc. A 367, 3637–3664 (2009b)Google Scholar
  45. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y. Gun’ko, J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High yield production of graphene by liquid phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008)Google Scholar
  46. C.J. Humphreys, The scattering of fast electrons by crystals. Rep. Prog. Phys. 42, 1825–1887 (1979)Google Scholar
  47. M. Isaacson, D. Johnson, Microanalysis of light-elements using transmitted energy-loss electrons. Ultramicroscopy 1, 33–52 (1975)Google Scholar
  48. M. Isaacson, D. Kopf, M. Utlaut, N.W. Parker, A.V. Crewe, Direct observation of atomic diffusion by scanning transmission electron microscopy. Proc Natl. Acad. USA. 74, 1802–1806 (1977)Google Scholar
  49. M. Isaacson, D. Kopf, M. Ohtsuki, M. Utlaut, Atomic imaging using the dark field annular detector in the STEM. Ultramicroscopy 4, 101–104 (1979)Google Scholar
  50. C. Jin, F. Lin, K. Suenaga, S. Iijima, Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett. 102, 195505 (2009)Google Scholar
  51. K. Kimoto, T. Asaka, T. Nagai, M. Saito, Y. Matsui, K. Ishizuka, Nature 450, 702–704 (2007)Google Scholar
  52. E.J. Kirkland, Advanced Computing in Electron Microscopy (Plenum Press, New York and London, 1998), p. 69Google Scholar
  53. H. Kohl, H. Rose, Theory of image formation by inelastically scattered electrons in the electron microscope. Adv. Imaging Electron. Phys. 65, 173–227 (1985)Google Scholar
  54. M. Koshino, T. Tanaka, N. Solin, K. Suenaga, H. Isobe, E. Nakamura, Imaging of single organic molecules in motion. Science 316, 85 (2007)Google Scholar
  55. O.L. Krivanek, M.F. Chisholm, V. Nicolosi, T.J. Pennycook, G.J. Corbin, N. Dellby, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, M.P. Oxley, S.T. Pantelides, S.J. Pennycook, Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571–574 (2010a). See also the on-line supplementary information available at
  56. O.L. Krivanek, G.J. Corbin, N. Dellby, B.F. Elston, R.J. Keyse, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, J.W. Woodruff, An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179–195 (2008b)Google Scholar
  57. O.L. Krivanek, N. Dellby, R.J. Keyse, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, in Advances in Imaging and Electron Physics, ed. by P.W. Hawkes (Academic Press, London, 2008a), pp. 121–155Google Scholar
  58. O.L. Krivanek, N. Dellby, A.R. Lupini, Towards sub-Å electron beams. Ultramicroscopy 78, 1–11 (1999)Google Scholar
  59. O.L. Krivanek, N. Dellby, M.F. Murfitt, in Handbook of Charged Particle Optics, 2nd edn., ed. by J. Orloff (CRC Press, Boca Raton, 2009a), pp. 601–640Google Scholar
  60. O.L. Krivanek, N. Dellby, M.F. Murfitt, M.F. Chisholm, T.J. Pennycook, K. Suenaga, V. Nicolosi, Gentle STEM: ADF imaging and EELS at low primary energies. Ultramicroscopy 110, 935–945, (2010b)Google Scholar
  61. O.L. Krivanek, N. Dellby, M.F. Murfitt, Z.S. Szilagyi, M.F. Chisholm, K. Suenaga, Slow and fast atomic motion observed by aberration-corrected STEM. In Proceedings MSA meeting (Portland), Microscopy and Microanalysis 16 (Suppl. 2), 70–71 (2010c)Google Scholar
  62. O.L. Krivanek, N. Dellby, A.J. Spence, R.A. Camps, L.M. Brown, Aberration correction in the STEM, in Proceedings 1997 EMAG meeting, ed. by J.M. Rodenburg, (Institute of Physics Conference Series vol. 153, 1997), pp. 35–40Google Scholar
  63. O.L. Krivanek, J.P. Ursin, N.J. Bacon, G.J. Corbin, N. Dellby, P. Hrncirik, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy. Phil. Trans. R. Soc. A 367, 3683–3697 (2009b)Google Scholar
  64. J.P. Langmore, J. Wall, M.S. Isaacson, The collection of scattered electrons in dark field electron microscopy. Optik 38, 335–350 (1973)Google Scholar
  65. Z. Liu, K. Yanagi, K. Suenaga, H. Kataura, S. Iijima, Imaging the dynamic behaviour of individual retinal chromophores confined inside carbon nanotubes. Nat. Nanotechnol. 2, 422–425 (2007)Google Scholar
  66. E.E. Martin, J.K. Trolan, W.P. Dyke, Stable, high density field emission cold cathode. J. Appl. Phys. 31, 782–789 (1960)Google Scholar
  67. J.C. Meyer, A. Chuvilin, G. Algara-Siller, J. Biskupek, U. Kaiser, Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett. 9, 2683–2689 (2009)Google Scholar
  68. D.A. Muller, Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. Mater. 8, 263–270 (2009)Google Scholar
  69. D.A. Muller, L. Fitting-Kourkoutis, M.F. Murfitt, J.H. Song, H.Y. Hwang, J. Silcox, N. Dellby, O.L. Krivanek, Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008)Google Scholar
  70. D.A. Muller, J. Silcox, Delocalization in inelastic electron scattering. Ultramicroscopy 59, 195–213 (1995)Google Scholar
  71. H. Müller, S. Uhlemann, P. Hartel, M. Haider, Advancing the hexapole Cs-corrector for the scanning transmission electron microscope. Microsc. Microanal. 12, 442–455 (2006)Google Scholar
  72. P.D. Nellist, M.F. Chisholm, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z.S. Szilagyi, A.R. Lupini, A. Borisevich, W.H. Sides, S.J. Pennycook, Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741–1742 (2004)Google Scholar
  73. R.S. Pantelic, J.C. Meyer, U. Kaiser, W. Baumeister, J.M. Plitzko, Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. J. Struct. Biol. 170, 152–156 (2010)Google Scholar
  74. W. Qian, M. Scheinfein, J.C.H. Spence, Brightness measurement of nanometer sized field emission electron sources. J. Appl. Phys. 73, 7041–7045 (1993)Google Scholar
  75. S.N. Rashkeev, A.R. Lupini, S.H. Overbury, S.J. Pennycook, S.T. Pantelides, Role of the nanoscale in catalytic CO oxidation by supported Au and Pt nanostructures. Phys. Rev. B 76, 035438 (2007)Google Scholar
  76. H. Rose, Abbildungseigenschaften sphärisch korrigierter elektronenoptischer Achromate. Optik 33, 1–24 (1971)Google Scholar
  77. H. Rose, Outline of a spherically corrected semiaplanatic medium-voltage transmission electron-microscope. Optik 85, 19–24 (1990)Google Scholar
  78. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (World Scientific Publishing, Singapore, 1998)Google Scholar
  79. H. Sawada, F. Hosokawa, T. Kaneyama, T. Ishizawa, M. Terao, M. Kawazoe, T. Sannomiya, T. Tomita, Y. Kondo, T. Tanaka, Y. Oshima, Y. Tanishiro, N. Yamamoto, K. Takayanagi, Achieving 63 pm resolution in scanning transmission electron microscope with spherical aberration corrector. Jpn. J. Appl. Phys. 46, L568–L570 (2007)Google Scholar
  80. H. Sawada, Y. Tanishiro, N. Ohashi, T. Tomita, F. Hosokawa, T. Kaneyama, Y. Kondo, K. Takayanagi, STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun. J. Electron. Microsc. 58, 357–361 (2009)Google Scholar
  81. O. Scherzer, Sphärische und chromatische Korrektur von Elektronen-linsen, Optik 2, 114–132 (1947)Google Scholar
  82. Z. Shao, On the fifth order aberration in a sextupole corrected probe forming system. Rev. Sci. Instrum. 59, 2429–2437 (1988)Google Scholar
  83. K. Suenaga, Y. Sato, Z. Liu, H. Kataura, T. Okazaki, K. Kimoto, H. Sawada, T. Sasaki, K. Omoto, T. Tomita, T. Kaneyama, Y. Kondo, Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. Nat. Chem. 1, 415–418 (2009)Google Scholar
  84. K. Suenaga, M. Tence, C. Mory, C. Colliex, H. Kato, T. Okazaki, H. Shinohara, K. Hirahara, S. Bandow, S. Iijima, Element-selective single atom imaging. Science 290, 2280–2282 (2000)Google Scholar
  85. K. Suenaga, H. Wakabayashi, M. Koshino, Y. Sato, K. Urita, S. Iijima, Imaging active topological defects in carbon nanotubes. Nat. Nanotechnol. 2, 358–360 (2007) (see also the supplementary materials)Google Scholar
  86. L.W. Swanson, N.A. Martin, Field electron cathode stability studies: Zirconium/tungsten thermal-field cathode. J. Appl. Phys. 46, 2029–2050 (1975)Google Scholar
  87. L.W. Swanson, G.A. Schwind, Review of ZrO/W Schottky Cathode, in Handbook of Charged Particle Optics, 2nd edn., ed. by J. Orloff (CRC Baton Rouge, 2009), pp. 1–28Google Scholar
  88. M.G.R. Thomson, The aberrations of quadrupole electron lenses. Ph.D. Dissertation, University of Cambridge, 1968Google Scholar
  89. M.M.J. Treacy, Optimistic atomic number contrast in annular dark field images of thin films in the scanning transmission electron microscope. J. Microsc. Spectrosc. Electron. 7, 511–523 (1982)Google Scholar
  90. M. Varela, S.D. Findlay, A.R. Lupini, H.M. Christen, A.Y. Borisevich, N. Dellby, O.L. Krivanek, P.D. Nellist, M.P. Oxley, L.J. Allen, S.J. Pennycook, Spectroscopic imaging of single atoms within a bulk solid. Phys. Rev. Lett. 92, 095502 (2004)Google Scholar
  91. J.A. Venables, G. Cox, Computer modeling of field emission gun scanning electron microscope columns. Ultramicroscopy 21, 33–46 (1987)Google Scholar
  92. P.M. Voyles, D.A. Muller, J.L. Grazul, P.H. Citrin, H.-J.L. Gossman, Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416, 826–829 (2002)Google Scholar
  93. J.S. Wall, Limits on visibility of single heavy atoms in the scanning transmission electron microscope – an experimental study. Proc. 47th Nobel Symp. Chemica Scripta 14, 271–278 (1979)Google Scholar
  94. J. Zach, Chromatic correction: a revolution in electron microscopy? Phil. Trans. R. Soc. A 367, 3699–3707 (2009)Google Scholar
  95. J. Zach, M. Haider, Aberration correction in a low-voltage SEM by a multipole corrector. Nucl. Instr. Meth. A 363, 316–325 (1995)Google Scholar
  96. A. Zobelli, A. Gloter, C.P. Ewels, G. Seifert, C. Colliex, Electron knock-on cross section of carbon and boron nitride nanotubes. Phys Rev. B 75, 245402 (2007)Google Scholar
  97. V.K. Zworykin, J. Hillier, R.L. Snyder, A scanning electron microscope. A.S.T.M. Bull. No. 117, 15–23 (1942)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ondrej L. Krivanek
    • 1
  • Matthew F. Chisholm
    • 2
  • Niklas Dellby
    • 1
  • Matthew F. Murfitt
    • 1
  1. 1.Nion Co.KirklandUSA
  2. 2.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations