Skip to main content

Nanocharacterization of Heterogeneous Catalysts by Ex Situ and In Situ STEM

  • Chapter
  • First Online:
Scanning Transmission Electron Microscopy

Abstract

Heterogeneous catalysts are an important set of materials that increase the rate of chemical reactions. The increase in the reaction rate can be many orders of magnitude and depends on the degree to which the activation energy of the reaction can be lowered. Heterogeneous catalysts have traditionally played major roles in fields such as fuel processing, chemical synthesis and polymer production (van Santen et al. 1999). More recently they have played increasing roles in the environmental technology, energy production and materials synthesis. The field is undergoing a significant expansion and it is widely recognized that, for substantial progress, it is necessary to develop an atomic-level understanding of the interaction between the catalyst and the reactants/product in order to design novel catalytic materials that can address the problems of the 21 st century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • L.F. Allard, W.C. Bigelow, D.P. Nackashi, J. Damiano, S.E. Mick, A new paradigm for ultra-high-resolution imaging at elevated temperature. Microsc. Microanal. 14(Suppl. 2), 792–793 (2008)

    Google Scholar 

  • L.F. Allard, W.C. Bigelow, M. Jose-Yacaman, D.P. Nackashi, J. Damiano, S.E. Mick, A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures. Microsc. Res. Tech. 72, 208–215 (2009)

    Article  CAS  Google Scholar 

  • I. Arslan, J.C. Walmsley, E. Rytter, E. Bergene, P.A. Midgley, Toward three-dimensional nanoengineering of heterogeneous catalysts. J. Am. Chem. Soc. 130, 5716–5719 (2008)

    Article  CAS  Google Scholar 

  • R.T.K. Baker, M.A. Barber, P.S. Harris, F.S. Feates, R.J. White, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J. Catal. 26, 51–62 (1972)

    Article  CAS  Google Scholar 

  • R.T.K. Baker, J.J. Chludzinski, Filamentous carbon growth on nickel-iron surfaces: The effect of various oxide additives. J. Catal. 64, 464–478 (1980)

    Article  CAS  Google Scholar 

  • R.T.K. Baker, J.J. Chludzinski, In-situ electron microscopy studies of the behavior of supported ruthenium particles. 1. The catalytic influence on graphite gasification reactions. J. Phys. Chem. 90, 4730–4734 (1986)

    Article  Google Scholar 

  • R.T.K. Baker, J.J. Chludzinski, J.A. Dumesic, Filamentous carbon growth on nickel surfaces treated with titanium dioxide: Migration of titania and ramifications of strong metal–support interactions. J. Catal. 93, 312–320 (1985)

    Article  CAS  Google Scholar 

  • R.T.K. Baker, J.J. Chludzinski, C.R.F. Lund, Further studies of the formation of filamentous carbon from the interaction of supported iron particles with acetylene. Carbon 25, 295–303 (1987)

    Article  CAS  Google Scholar 

  • R.T.K. Baker, P.S. Harris, R.B. Thomas, R.J. Waite, Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J. Catal. 30, 86–95 (1973)

    Article  CAS  Google Scholar 

  • R.T.K. Baker, N.M. Rodriguez, A review of the use of in situ electron microscopy techniques for the study of iron-based catalysts for coal conversion processes. Energy Fuels 8, 330–340 (1994)

    Article  CAS  Google Scholar 

  • M.A. Bañares, I.E. Wachs, Molecular structures of supported metal oxide catalysts under different environments. J. Raman Spectrosc. 33, 359 (2002)

    Article  CAS  Google Scholar 

  • P.E. Batson, Motion of Au atoms on carbon in the aberration corrected STEM. Microsc. Microanal. 14, 89–97 (2008)

    CAS  Google Scholar 

  • L. Bednarova, C.E. Lyman, E. Rytter, A. Holmen, Effect of support on the size and composition of highly dispersed Pt–Sn particles. J. Catal. 211, 335–346 (2002)

    CAS  Google Scholar 

  • A.R. Belambe, R. Oukaci, J.G.J. Goodwin, Effect of pretreatment on the activity of a Ru-promoted Co/Al2O3 Fischer Tropsch catalyst. J. Catal. 166, 8–15 (1997)

    Article  CAS  Google Scholar 

  • D.A. Blom, L.F. Allard, S. Mishina, O’M.A. Keefe, Early results from an aberration-corrected JEOL 2200FS STEM/TEM at Oak Ridge National Laboratory. Microsc. Microanal. 12, 483–491 (2006)

    Article  CAS  Google Scholar 

  • D.A. Blom, S.A. Bradley, W. Sinkler, L.F. Allard, Observation of Pt atoms, clusters and rafts on oxide supports, by sub-Angstrom Z-contrast imaging in an aberration-corrected STEM/TEM. Microsc. Microanal. 12(Suppl. 2), 50–51 (2006)

    Article  Google Scholar 

  • A.Y. Borisevich, A.R. Lupini, S.J. Pennycook, Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc. Natl. Acad. Sci. 103, 3044–3048 (2006)

    Article  CAS  Google Scholar 

  • A.Y. Borisevich, S. Wang, S.N. Rashkeev, M. Glazoff, S.J. Pennycook, S.T. Pantelides, Dual nanoparticle/substrate control of catalytic dehydrogenation. Adv. Mater. 19, 2129–2133 (2007)

    Article  CAS  Google Scholar 

  • E.D. Boyes, P.L. Gai, Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 67, 219–232  (1997)

    Article  CAS  Google Scholar 

  • P. Butler, K. Hale, Dynamic experiments in the electron microscope. Prac. Methods Electron Microsc., North Holland 9, 239–308 (1981)

    Google Scholar 

  • J.F. Creemer, S. Helveg, et al., Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108, 993–998 (2008)

    Article  CAS  Google Scholar 

  • A.V. Crewe, J. Wall, J. Langmore, Visibility of single atoms. Science 168, 1338–1340 (1970)

    Article  CAS  Google Scholar 

  • P.A. Crozier, Nanoscale oxide patterning with electron–solid–gas reactions. Nanoletters 7, 2395–2398 (2007)

    Article  CAS  Google Scholar 

  • P.A. Crozier, A.K. Datye, Direct observation of reduction of PdO to Pd metal by in situ electron microscopy. Stud. Surf. Sci. Catal. 130, 3119–3124 (2000)

    Article  Google Scholar 

  • P.A. Crozier, R. Sharma, A.K. Datye, Oxidation and reduction of small palladium particles on silica. Microsc. Microanal. 4, 278–285 (1998)

    CAS  Google Scholar 

  • P.A. Crozier, S.-C. Tsen, J. Liu, C. Lopez Cartes, J.A. Perez-Omil, Factors affecting the accuracy of lattice spacing determination by HREM in nanometre-sized Pt particles. J. Electron Microsc. 48(Suppl.), 1015–1024 (1999)

    Google Scholar 

  • P.A. Crozier, R. Wang, R. Sharma, In situ environmental TEM studies of dynamic changes in cerium-based oxide nanoparticles during redox processes. Ultramicroscopy 108, 1432–1440 (2008)

    Article  CAS  Google Scholar 

  • A.K. Datye, Electron microscopy of catalysts: recent achievements and future prospects. J. Catal. 216, 144–154 (2003)

    Article  CAS  Google Scholar 

  • A.K. Datye, Particle size distributions in heterogeneous catalysts: What do they tell us about the sintering mechanism? Catal. Today 111, 59–67 (2006)

    Article  CAS  Google Scholar 

  • N. de Jonge, D.B. Peckys, G.J. Kremers, D.W. Piston, Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. USA. 106, 2159–2164 (2009)

    Article  Google Scholar 

  • N. Dellby, M. Murfitt, O.L. Krivanek, M. Kociak, K. March, M. Tence, C. Colliex, Atomic-resolution STEM at 60 kV primary voltage. Microsc. Microanal. 14(Suppl 2), 136–137 (2008)

    Google Scholar 

  • E.G. Derouane, J.J. Chludzinski, R.T.K. Baker, Direct observation of wetting and spreading of copper particles on magnesium oxide. J. Catal. 85, 187–196 (1984)

    Article  CAS  Google Scholar 

  • A.M. Donald, A.J. Craven, A study of grain boundary segregation in Cu–Bi alloys using STEM. Philos. Mag. A 39, 1–11 (1979)

    Article  CAS  Google Scholar 

  • R.C. Doole, G.M. Parkinson, J.M. Stead, Inst. Phys. Conf. Ser. 119, 157–160 (1991)

    CAS  Google Scholar 

  • J.A. Dumesic, S.A. Stevenson, R.D. Sherwood, R.T.K. Baker, Migration of nickel and titanium oxide species as studied by in situ scanning transmission electron microscopy. J. Catal. 99, 79–87 (1986)

    Article  CAS  Google Scholar 

  • R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd edn. (Plenum Press, New York, NY, 1996)

    Book  Google Scholar 

  • R.F. Egerton, Application of electron energy-loss spectroscopy to the study of solid catalysts. Top. Catal. 21, 185–190 (2002)

    Article  CAS  Google Scholar 

  • R.F. Egerton, Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 72, 016502 (2009)

    Google Scholar 

  • D. Ferrer, D.A. Blom, L.F. Allard, S. Mejia, E. Perez-Tijerina, M. Jose-Yacaman, Atomic structure of three-layer Au/Pd nanoparticles revealed by aberration-corrected scanning transmission electron microscopy. J. Mater. Chem. 18, 2442–2446 (2008)

    Article  CAS  Google Scholar 

  • P.L. Gai, Philos. Mag. 48, 359–371 (1983)

    Article  CAS  Google Scholar 

  • P.L. Gai, Environmental high resolution electron microscopy of gas-catalyst reactions. Top. Catal. 8, 97–113 (1999)

    Article  CAS  Google Scholar 

  • P.L. Gai, E.D. Boyes, Catal. Rev. Sci. Eng. 34, 1–54 (1992)

    Article  Google Scholar 

  • P.L. Gai, E.D. Boyes, in In Situ Microscopy in Materials Research, ed. by P.L. Gai (Kluwer, Dordrecht, 1997), pp. 123–146

    Google Scholar 

  • S. Giorgio, S. Sao Joao, S. Nitsche, D. Chaudanson, G. Sitja, H.C.R., Environmental electron microscopy (ETEM) for catalysts with a closed E-cell with carbon windows. Ultramicroscopy 106, 503–507 (2006)

    Google Scholar 

  • L.C. Gontard, L.Y. Chang, C.J.D. Hetherington, A.I. Kirkland, D. Ozkaya, R.E. Dunin-Borkowski, Aberration-corrected imaging of active sites on industrial catalyst nanoparticles. Ange. Chem. Int. Ed. 46, 3683–3685 (2007)

    Article  CAS  Google Scholar 

  • L. Hansen, J.B. Wagner, in Proceedings of the 12th European Congress on Electron Microscopy, (Brno, 2000) 537–538

    Google Scholar 

  • P.L. Hansen, J.B. Wagner, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen, H. Topsoe, Atom resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053 (2002)

    Article  CAS  Google Scholar 

  • T.W. Hansen, J.B. Wagner, P.L. Hansen, S. Dahl, H. Topsoe, C.J.H. Jacobson, Science 294, 1508–1510 (2001)

    Article  CAS  Google Scholar 

  • A.A. Herzing, C.J. Kiely, A.F. Carley, P. Landon, G.J. Hutchings, Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321, 1331–1335 (2008)

    Article  CAS  Google Scholar 

  • A.A. Herzing, M. Watanabe, J.K. Edwards, M. Conte, Z.R. Tang, G.J. Hutchings, C.J. Kiely, Energy dispersive X-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope. Faraday Discussions, 138, 337–351 (2008)

    Google Scholar 

  • S. Hillyard, J. Silcox, Detector geometry, thermal diffuse scattering and strain effects in ADF STEM imaging. Ultramicroscopy 58, 6–17 (1995)

    Article  CAS  Google Scholar 

  • T. Huang, T. Yu, S. Jhao, Weighting variation of water–gas shift in steam reforming of methane over supported Ni and Ni–Cu catalysts. Ind. Eng. Chem. Res. 45, 150–156 (2006)

    Article  CAS  Google Scholar 

  • W.J. Huang, B. Jiang, R.S. Sun, J.M. Zuo, Towards sub-Å atomic resolution electron diffraction imaging of metallic nanoclusters: A simulation study of experimental parameters and reconstruction algorithms. Ultramicroscopy 107, 1159–1170 (2007)

    Article  CAS  Google Scholar 

  • W.J. Huang, R. Sun, J. Tao, L.D. Menard, R.G. Nuzzo, J.M. Zuo, Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nat. Mater. 7, 308–313 (2008)

    Article  CAS  Google Scholar 

  • E. Iglesia, S.L. Soled, R.A. Fiato, G.H. Via, Bimetallic synergy in cobalt–ruthenium Fischer–Tropsch synthesis catalysts. J. Catal. 143, 345–368 (1993)

    Article  CAS  Google Scholar 

  • M. Inokuti, J.L. Dehmer, T. Baer, J.D. Hanson, Oscillator strength moments, stopping power and total inelastic scattering cross sections of all atoms through strontium. Phys. Rev. A 23, 95–109 (1981)

    Article  CAS  Google Scholar 

  • M.S. Isaacson, J. Langmore, N.W. Parker, D. Kopf, M. Utlaut, The study of the adsorption and diffusion of heavy atoms on light element substrates by means of the atomic resolution STEM. Ultramicroscopy 1, 359–376 (1976)

    Article  CAS  Google Scholar 

  • G. Jacobs, P.M. Patterson, Y. Zhang, T. Das, J. Li, B.H. Davis, Fischer–Tropsch synthesis: deactivation of noble metal-promoted Co/Al2O3 catalysts. Appl. Catal. A 233, 215–226 (2002)

    Article  CAS  Google Scholar 

  • J.S. Kim, T. LaGrange, B.W. Reed, M.L. Taheri, M.R. Armstrong, W.E. King, N.D. Browning, G.H. Campbell, Imaging of transient structures using nanosecond in situ TEM. Science 321, 1472–1475 (2008)

    Article  CAS  Google Scholar 

  • K. Kimoto, T. Asaka, T. Nagai, M. Saito, Y. Matsui, K. Ishizuka, Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450, 702–704 (2007)

    Article  CAS  Google Scholar 

  • E.J. Kirkland, Advanced Computing in Electron Microscopy (Plenum Press, New York, NY, 1998)

    Google Scholar 

  • R.F. Klie, M.M. Disko, N.D. Browning, Atomic scale observations of the chemistry at the metal–oxide interface in heterogeneous catalysts. J. Catal. 205, 1–6 (2002)

    Article  CAS  Google Scholar 

  • A. Kogelbauer, J.G. Goodwin Jr., R. Oukaci, Ruthenium promotion of Co/Al2O3 Fischer–Tropsch catalysts. J. Catal. 160, 125–133 (1996)

    Article  CAS  Google Scholar 

  • K.T. Kohlmann, M. Thiemann, W.H. Brünger, E-beam induced X-ray mask repair with optimized gas nozzle geometry. Microelectron. Eng. 13, 279–282 (1991)

    Article  CAS  Google Scholar 

  • T.C. Lee, D.K. Dewald, J.A. Eades, I.M. Robertson, H.K. Birnbaum, An environmental cell transmission electron microscope. Rev. Sci. Instrum. 62, 1438–1444 (1991)

    Article  CAS  Google Scholar 

  • Y. Li, J. Chen, L. Chang, Y. Qin, The doping effect of copper on the catalytic growth of carbon fibers from methane over a Ni/Al2O3 catalysts prepared from Feitknecht compound precursor. J. Catal. 178, 76–83 (1998)

    Article  CAS  Google Scholar 

  • P. Li, J. Liu, N. Nag, P.A. Crozier, Atomic-scale study of in-situ metal nanoparticle synthesis in a Ni/TiO2 system. J. Chem. Phys. B 109, 13883–13890 (2005)

    Article  CAS  Google Scholar 

  • P. Li, J. Liu, N. Nag, P.A. Crozier, Dynamic nucleation and growth of Ni nanoparticles on high surface area titania. Surface Sci. 600, 693–702 (2006a)

    Article  CAS  Google Scholar 

  • P. Li, J. Liu, N. Nag, P.A. Crozier, In situ synthesis and characterization of Ru promoted Co/Al2O3 Fischer–Tropsch catalysts. Appl. Catal. A 307(2), 212–221 (2006b)

    Article  CAS  Google Scholar 

  • P. Li, J. Liu, N. Nag, P.A. Crozier, In situ preparation of Ni-Cu/TiO2 bimetallic catalysts. J. Catal. 262, 73–82 (2009)

    Article  CAS  Google Scholar 

  • Z.Y. Li, N.P. Young, M. DiVece, S. Palomba, R.E. Palmer, A.L. Bleloch, B.C. Curley, R.L. Johnson, J. Jiang, J. Juan, Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451, 46–48 (2008)

    Article  CAS  Google Scholar 

  • J.Y. Liu, Advanced Electron Microscopy Characterization of Nanostructured Heterogeneous Catalysts, Microscopy and Microanalysis, 10, 55–76 (2004)

    Google Scholar 

  • J.Y. Liu, Scanning transmission electron microscopy and its application to the study of nanoparticles and nanoparticle systems. J. Electron Microsc. 54, 251–278 (2005)

    Article  CAS  Google Scholar 

  • J. Liu, J.M. Cowley, High-angle ADF and high-resolution SE imaging of supported catalysts clusters. Ultramicroscopy 34, 119–128 (1990)

    Article  CAS  Google Scholar 

  • R.-J. Liu, P.A. Crozier, C.M. Smith, D.A. Hucul, J. Blackson, G. Salaita, In-situ electron microscopy studies of the sintering of palladium nanoparticles on alumina during catalyst regeneration processes. Microsc. Microanal. 10, 77–85 (2004)

    CAS  Google Scholar 

  • R.-J. Liu, P.A. Crozier, C.M. Smith, D.A. Hucul, J. Blackson, G. Salaita, A new contact sintering mechanism associated with regeneration of Pd/Al2O3 hydrogenation catalyst. Appl. Catal. A 282, 111–121 (2005)

    Article  CAS  Google Scholar 

  • Y. Liu, D.Z. Liu, Study of bimetallic Cu–Ni/g-Al2O3 catalysts for carbon dioxide hydrogenation. Int. J. Hydrogen Energy 24, 351–354 (1999)

    Article  CAS  Google Scholar 

  • A.R. Lupini, S.J. Pennycook, Localization in elastic and inelastic scattering. Ultramicroscopy 96, 313–322 (2003)

    Article  CAS  Google Scholar 

  • C.E. Lyman, J.I. Goldstein, D.B. Williams, D.W. Ackland, S. von Harrach, N. A.W., P.J. Statham, High-performance X-ray detection in a new analytical electron microscope. J. Microsc. 176, 85–98 (1994)

    Google Scholar 

  • C.E. Lyman, R.E. Lakis, H.G. Stenger, X-ray emission spectrometry of phase separation in Pt–Rh nanoparticles for nitric oxide reduction. Ultramicroscopy  58, 25–34 (1995)

    Article  CAS  Google Scholar 

  • C.E. Lyman, R.E. Lakis, H.G. Stenger Jr., B. Tøtdal, R. Prestvik, Analysis of alloy nanoparticles. Microchim. Acta 132, 301–308 (2000)

    CAS  Google Scholar 

  • L. Marton, Bull. Acad. R. Belg. Cl. Sci 21, 553 (1935)

    Google Scholar 

  • S. Matsui, T. Ichihashi, In situ observation on electron-beam-induced chemical vapor deposition by transmission electron microscopy. Appl. Phys. Lett. 53, 842–844 (1988)

    Article  CAS  Google Scholar 

  • L.D. Menard, F.T. Xu, R.G. Nuzzo, J.C. Yang, Preparation of TiO2-supported Au nanoparticle catalysts from a Au-13 cluster precursor: Ligand removal using ozone exposure versus a rapid thermal treatment. J. Catal. 243, 64–73 (2006)

    Article  CAS  Google Scholar 

  • P.A. Midgley, M. Weyland, 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413–431 (2003)

    Article  CAS  Google Scholar 

  • K. Mitsuishi, M. Shimojo, M. Han, K. Furuya, Electron-beam-induced deposition using a subnanometer sized probe of high-energy electrons. Appl. Phys. Lett. 83, 2064–2066 (2003)

    Article  CAS  Google Scholar 

  • M. Mogensen, in Ceria-Based Electrodes. Catalysis by Ceria and Related Materials, ed. by A. Trovarelli (Imperial College Press, London, 2002), pp. 453–481

    Google Scholar 

  • M. Mogensen, D. Lybye, N. Bonanos, P.V. Hendriksen, F.W. Poulsen, Factors controlling the oxide ion conductivity of fluorite and perovskite structured oxides. Solid State Ionics 174, 279–286 (2004)

    Article  CAS  Google Scholar 

  • M. Mogensen, N.M. Sammes, G.A. Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129, 63–94 (2000)

    Article  CAS  Google Scholar 

  • M.S. Moreno, M. Weyland, P.A. Midgley, J.F. Bengoa, M.V. Cagnoli, N.G. Gallegos, A.M. Alvarez, S.G. Marchetti, Highly anisotropic distribution of iron nanoparticles within MCM-41 mesoporous silica. Micron 37, 52–56 (2006)

    Article  CAS  Google Scholar 

  • D.A. Muller, L.F. Kourkoutis, M. Murfitt, J.H. Song, H.Y. Hwang, J. Silcox, N. Dellby, O.L. Krivanek, Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008)

    Article  CAS  Google Scholar 

  • R. Naghash, T.H. Etsell, S. Xu, XRD and XPS study of Cu–Ni interactions on reduced copper–nickel–aluminum oxide solid solution catalyst. Chem. Mater. 18, 2480–2488 (2006)

    Article  CAS  Google Scholar 

  • R. Naghash, S. Xu, T.H. Etsell, Coprecipitation of nickel–copper–aluminum takovite as catalyst precursors for simultaneous production of carbon nanofibers and hydrogen. Chem. Mater. 17, 815–821 (2005)

    Article  CAS  Google Scholar 

  • P.D. Nellist, S.J. Pennycook, Direct imaging of the atomic configuration of ultradispersed catalysts. Science 274, 413–415 (1996)

    Article  CAS  Google Scholar 

  • P.D. Nellist, S.J. Pennycook, Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78, 111–124 (1999)

    Article  CAS  Google Scholar 

  • N.L. Okamoto, B.W. Reed, S. Mehraeen, A. Kulkarni, D.G. Morgan, B.C. Gates, N.D. Browning, Determination of nanocluster sizes from dark-field scanning transmission electron microscopy images. J. Phys. Chem. C 112, 1759–1763 (2008)

    Article  CAS  Google Scholar 

  • V. Oleshko, P. Crozier, R. Cantrell, A. Westwood, In situ and ex situ study of propylene polymerization with a MgCl2-supported Ziegler-Natta catalyst. Stud. Surf. Sci. Catal. 130, 935–940 (2000)

    Article  Google Scholar 

  • V. Oleshko, P.A. Crozier, R. Cantrell, A. Westwood, In-situ real-time environmental TEM of gas phase Ziegler-Natta catalytic polymerization of propylene. J. Electron Microsc. 51(Suppl.), S27–S39 (2002)

    Google Scholar 

  • V.P. Oleshko, P.A. Crozier, R.D. Cantrell, A.D. Westwood, In-situ and ex-situ study of gas phase propylene polymerization over a high activity TiCl4–MgCl2 heterogeneous Zeigler-Natta catalyst. Macromol. Rapid Commun. 22, 34–40 (2001)

    Article  CAS  Google Scholar 

  • M. Pan, J.M. Cowley, J.C. Barry, Coherent electron microdiffraction from small metal particles. Ultramicroscopy 30, 385–394 (1989)

    Article  CAS  Google Scholar 

  • M. Pan, J.M. Cowley, I.Y. Chan, Study of highly dispersed Pt in Y-zeolites by STEM and electron microdiffraction. Ultramicroscopy 34, 93–101 (1990)

    Article  CAS  Google Scholar 

  • G.M. Parkinson, Catal. Lett. 2, 303 (1989)

    Article  CAS  Google Scholar 

  • S.J. Pennycook, Study of supported ruthenium catalysts by STEM. J. Microsc. 124, 15–22 (1981)

    Article  CAS  Google Scholar 

  • S.J. Pennycook, D.E. Jesson, High-resolution incoherent imaging of crystals. Phys. Rev. Lett. 64, 938–941 (1990)

    Article  CAS  Google Scholar 

  • R. Prestvik, B. Tøtdal, C.E. Lyman, A. Holmen, Bimetallic particle formation in Pt–Re/Al2O3 reforming catalysts revealed by energy-dispersive X-Ray spectrometry in the analytical electron microscope. J. Catal. 176, 246–252 (1998)

    Article  CAS  Google Scholar 

  • W.D. Pyrz, D.A. Blom, N.R. Shiju, V.V. Guliants, T. Vogt, D.J. Buttrey, Using aberration-corrected STEM imaging to explore chemical and structural variations in the M1 phase of the MoVNbTeO oxidation catalyst. J. Phys. Chem. C 112, 10043–10049 (2008)

    Article  CAS  Google Scholar 

  • L. Reimer, Scanning Electron Microscopy (Springer-Verlag, Berlin, 1985)

    Google Scholar 

  • S.B. Rice, S.A. Bradley, Imaging supported metal catalysts: the case for annular dark-field microscopy. Catal. Today 21, 71–82 (1994)

    Article  CAS  Google Scholar 

  • F.M. Ross, J. Tersoff, M.C. Reuter, Sawtooth faceting in silicon nanowires. Phys. Rev. Lett. 95, 4 (2005)

    Google Scholar 

  • R. Sharma, P.A. Crozier, In situ electron microscopy of CeO2 and CeO2–ZrO2 reduction. Inst. Phys. Conf. Ser. 61, 569–572 (1999)

    Google Scholar 

  • R. Sharma, P.A. Crozier, in Environmental Transmission Electron Microscopy in Nanotechnology Handbook of Microscopy for Nanotechnology, eds. by N. Yao, Z.L. Wang (Kluwer, New York, NY, 2005), pp. 531–563

    Google Scholar 

  • R. Sharma, P.A. Crozier, Z.C. Kang, L. Eyring, Observation of dynamic nanostructural and nanochemical changes in ceria-based catalysts during in situ reduction. Philos. Mag. 84, 2731–2747 (2004)

    Article  CAS  Google Scholar 

  • R. Sharma, P.A. Crozier, R. Marx, K. Weiss, An environmental transmission electron microscope for in-situ observation of chemical processes at the nanometer level. Microsc. Microanal. 9(Suppl. 02), CD 912–913 (2003)

    Google Scholar 

  • R. Sharma, Z. Iqbal, In situ observations of carbon nanotube formation using environmental transmission electron microscopy. Appl. Phys. Lett. 84, 990–992 (2004)

    Article  CAS  Google Scholar 

  • R. Sharma, E. Moore, P. Rez, M.M.J. Treacy, Site-specific fabrication of Fe particles for carbon nanotube growth. Nano Lett. 9, 689–694 (2009)

    Article  CAS  Google Scholar 

  • R. Sharma, K. Weiss, Microsc. Res. Tech. 42, 270–280 (1998)

    Article  CAS  Google Scholar 

  • M. Shelef, R.W. McCabe, Twenty-five years after introduction of automotive catalysts: what next? Catal. Today 62, 35–50 (2000)

    Article  CAS  Google Scholar 

  • A.J. Simoens, R.T.K. Baker, D.J. Dwyer, C.R.F. Lund, R.J. Madon, A study of the nickel–titanium oxide interaction. J. Catal. 86, 359–372 (1984)

    Article  CAS  Google Scholar 

  • S.B. Simonsen, S. Dahl, E. Johnson, S. Helveg, Ceria-catalyzed soot oxidation studied by environmental transmission electron microscopy. J. Catal. 255, 1–5 (2008)

    Article  CAS  Google Scholar 

  • J.H. Sinfelt, Catalysis by alloys and bimetallic clusters. Accounts Chem. Res. 10, 15–20 (1977)

    CAS  Google Scholar 

  • A. Singhal, J.C. Yang, J.M. Gibson, STEM-based mass spectroscopy of supported Re clusters. Ultramicroscopy 67, 191 (1997)

    Article  CAS  Google Scholar 

  • K. Sohlberg, S. Rashkeev, A.Y. Borisevich, S.J. Pennycook, S.T. Pantelides, Origin of anomalous Pt–Pt distances in the Pt/alumina catalytic system. Chemphyschem 5(12), 1893–1897 (2004)

    Article  CAS  Google Scholar 

  • R.L. Stewart, Insulating films formed under electron and ion bombardment. Phys. Rev. 45, 488–490 (1934)

    Article  CAS  Google Scholar 

  • K. Sun, J. Liu, N. Nag, N.D. Browning, Studying the metal–support interaction in Pd/gamma-Al2O3 catalysts by atomic-resolution electron energy-loss spectroscopy. Catal. Lett. 84, 193–199 (2002a)

    Article  CAS  Google Scholar 

  • K. Sun, J. Liu, N.K. Nag, N.D. Browning, Atomic scale characterization of supported Pd–Cu/gamma-Al2O3 bimetallic catalysts. J. Phys. Chem. B 106, 12239–12246 (2002b)

    Article  CAS  Google Scholar 

  • K. Sun, J.Y. Liu, N.D. Browning, Direct atomic scale analysis of the distribution of Cu valence states in Cu/-gamma-Al2O3 catalysts. Appl. Catal. B Environ. 38, 271–281 (2002c)

    Article  CAS  Google Scholar 

  • P.R. Swann, N.J. Tighe, Proc. 5th Eur. Reg. Cong. Electron Microsc. 436 (1972)

    Google Scholar 

  • K. Takeuchi, T. Matsuzaki, H. Arakawa, T. Hanaoka, Y. Sugi, Synthesis of C2-oxygenates from syngas over cobalt catalysts promoted by ruthenium and alkaline earths. Appl. Catal. A 48, 149–157 (1989)

    Article  CAS  Google Scholar 

  • B.L. Thiel, M. Toth, Secondary electron contrast in low-vacuum/environmental scanning electron microscopy of dielectrics. J. Appl. Phys. 97, 051101 (2005)

    Article  CAS  Google Scholar 

  • J.M. Thomas, P.L. Gai, Electron Microscopy and the Materials Chemistry of Solid Catalysts. Advances in Catalysis, vol. 48. (Elsevier, San Diego, 2004), pp. 171–227

    Google Scholar 

  • M.M.J. Treacy, Imaging with Rutherford scattered electrons in the scanning transmission electron microscope. Scann. Electron Microsc. 1, 185–197 (1981)

    Google Scholar 

  • M.M.J. Treacy, A. Howie, S.J. Pennycook, Z contrast of supported catalysts particles on the STEM. Inst. Phys. Conf. Ser. 52, 261–264 (1980)

    Google Scholar 

  • M.M.J. Treacy, A. Howie, C.J. Wilson, Z-contrast of platinum and palladium catalysts. Philos. Mag. A 38, 569–585 (1978)

    Article  CAS  Google Scholar 

  • M.M.J. Treacy, S.B. Rice, Catalyst particle sizes from Rutherford scattered intensities. J. Microsc. 156, 211–234 (1989)

    Article  CAS  Google Scholar 

  • A. Trovarelli, Catalysis by Ceria and Related Materials (Imperial College Press, London, 2002)

    Google Scholar 

  • B.H. Upton, C.C. Chen, N.M. Rodriguez, R.T.K. Baker, In situ electron microscopy studies of the interaction of iron, cobalt, and nickel with molybdenum disulfide single crystals in hydrogen. J. Catal. 141, 171–190 (1993)

    Article  CAS  Google Scholar 

  • J. van de Loosdrecht, M. van der Haar, A.M. van der Kraan, A.J. van Dillem, J.W. Geus, Preparation and properties of supported cobalt catalysts for Fischer–Tropsch synthesis. Appl. Catal. A 150, 365–376 (1997)

    Article  Google Scholar 

  • R.A. van Santen, J.W. Niemantsverdriet, Chemical Kinetics and Catalysis (Plenum Press, London, 1995)

    Google Scholar 

  • R.A. van Santen, P.W.N.M. van Leeuwen, J.A. Moulijn, Catalysis: An Integrated Approach (Elsevier, Amsterdam, 1999)

    Google Scholar 

  • M. Varela, S.D. Findlay, A.R. Lupini, H.M. Christen, A.Y. Borisevich, N. Dellby, O.L. Krivanek, P.D. Nellist, M.P. Oxley, L.J. Allen, S.J. Pennycook, Spectroscopic imaging of single atoms within a bulk solid. Phys. Rev. Lett. 92, 095502 (2004)

    Article  CAS  Google Scholar 

  • P.C.K. Vesborg, I. Chorkendorff, I. Knudsen, O. Balmes, J. Nerlov, A.M. Molenbroek, B.S. Clausen, S. Helveg, Transient behavior of Cu/ZnO-based methanol synthesis catalysts. J. Catal. 262, 65–72 (2009)

    Article  CAS  Google Scholar 

  • J. Wall, J. Langmore, M.S. Isaacson, A.V. Crewe, Scanning transmission electron microscopy at high resolution. Proc. Natl. Acad. Sci. 71, 1–5 (1974)

    Article  CAS  Google Scholar 

  • H. Wang, R.T.K. Baker, Decomposition of methane over a Ni–Cu–MgO catalyst to produce hydrogen and carbon nanofibers. J. Phys. Chem. B 108, 20273–20277 (2004)

    Article  CAS  Google Scholar 

  • R. Wang, P.A. Crozier, R. Sharma, J.B. Adams, Nanoscale heterogeneity in ceria zirconia with low-temperature redox properties. J. Phys. Chem. B 110, 18278–18285 (2006)

    Article  CAS  Google Scholar 

  • R. Wang, P.A. Crozier, R. Sharma, J.B. Adams, Measuring the redox activity of individual catalytic nanoparticles in cerium-based oxides. Nanoletters 8, 962–967 (2008)

    Article  CAS  Google Scholar 

  • S.W. Wang, A.Y. Borisevich, S.N. Rashkeev, M.V. Glazoff, K. Sohlberg, S.J. Pennycook, S.T. Pantelides, Dopants adsorbed as single atoms prevent degradation of catalysts. Nat. Mater. 3, 274–274 (2004)

    Article  CAS  Google Scholar 

  • M. Watanabe, D.W. Ackland, A. Burrows, C.J. Kiely, D.B. Williams, O.L. Krivanek, N. Dellby, M.F. Murfitt, Z. Szilagyi, Improvements in the X-Ray Analytical Capabilities of a Scanning Transmission Electron Microscope by Spherical-Aberration Correction. Microscopy and Microanalysis, 12, 515–526 (2006).

    Google Scholar 

  • J.H.L. Watson, An effect of electron bombardment upon carbon black. J. Appl. Phys. 18, 153–161 (1947)

    Article  CAS  Google Scholar 

  • J.H.L. Watson, Specimen contamination in electron microscopes. J. Appl. Phys. 19, 110–111 (1948)

    Article  CAS  Google Scholar 

  • K. Wikander, A.B. Hungria, P.A. Midgley, A.E.C. Palmqvista, K. Holmberg, J.M. Thomas, Incorporation of platinum nanoparticles in ordered mesoporous carbon. J. Colloid Interf. Sci. 305, 204–208 (2007)

    Article  CAS  Google Scholar 

  • S. Wu, C. Zhu, W. Huang, Properties of polymer supported Ni–Cu bimetallic catalysts prepared by solvated metal atom impregnation. Chin. J. Polym. Sci. 14, 217–224 (1996)

    CAS  Google Scholar 

  • M.J. Yacaman, J.A. Ascencio, S. Tehuacanero, M. Marin, Modem applications of electron microscopy to catalysis. Top. Catal. 18, 167–173 (2002)

    Article  CAS  Google Scholar 

  • J.C. Yang, S. Bradley, J.M. Gibson, The oblate morphology of supported PtRu5 on carbon black. Mater. Charact. 51, 101–107 (2003)

    Article  CAS  Google Scholar 

  • N. Yao, G.E. Spinnler, R.A. Kemp, D.C. Guthrie, R.D. Cates, C.M. Bolinger, Proceedings of the 49th Annual; Meeting of Microscopy Society of America, San Francisco Press, 1028–1029 (1991)

    Google Scholar 

  • N.J. Zaluzec, Detector solid angle formulas for use in X-ray energy dispersive spectrometry. Microsc. Microanal. 15, 93–98 (2009)

    Article  CAS  Google Scholar 

  • Y. Zhang, D. Wei, S. Hammache, J.G. Goodwin Jr., Effect of water vapor on the reduction of Ru-promoted Co/Al2O3. J. Catal. 188, 281–290 (1999)

    Article  CAS  Google Scholar 

  • J.M. Zuo, M. Gao, J. Tao, B.Q. Li, R. Twesten, I. Petrov, Coherent nano-area electron diffraction. Microsc. Res. Tech. 64, 347–355 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank colleagues and former students for contributions, collaborations and discussions over the years from many who have contributed to the work present in this chapter including Renu Sharma, Karl Weiss, Vladimir Oleshko, Peng Li, Ruigang Wang, Jingyue Liu and Nabin Nag. Financial support is acknowledged from Dow Chemical Company, Monsanto Company and the National Science Foundation (NSF-CTS-0306688 and NSF-CBET-0553445) and the Department of Energy for funding the ESTEM (DOE # AAD-0-30621-01). I also gratefully acknowledge access to the instrumentation in John M. Cowley Center for High Resolution Electron Microscopy in the LeRoy Eyring Center for Solid State Science at Arizona State University.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Crozier, P.A. (2011). Nanocharacterization of Heterogeneous Catalysts by Ex Situ and In Situ STEM. In: Pennycook, S., Nellist, P. (eds) Scanning Transmission Electron Microscopy. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7200-2_13

Download citation

Publish with us

Policies and ethics