Application to Ceramic Interfaces

  • Yuichi Ikuhara
  • Naoya Shibata


Grain boundaries and interfaces of ceramics have peculiar atomic and electronic structures, caused by the disorder in periodicity, providing the functional properties, which cannot be observed in a perfect crystal. These structures are also influenced by the grain boundary and interface characters such as misorientation angle, grain boundary plane, lattice misfit and so on. In the vicinity of the grain boundaries and interfaces around the order of 1 nanometer, dopants or impurities are often segregated, and they play a crucial role in the material properties. STEM utilizing the Cs corrector enables us to identify the atomic columns and the location of the dopants on the grain boundaries and interfaces. In this chapter, after reviewing the general concept for grain boundary and interface, the latest results obtained by STEM are shown for low angle grain boundaries (dislocation boundary), coincidence site lattice (CSL) grain boundaries, grain boundary segregation, amorphous grain boundary, coherent and incoherent hetero-interface structure in various ceramics. In addition, new STEM techniques including annular bright field (ABF) is demonstrated for directly observing light elements which are main constituent components in ceramics. Several STEM images are analyzed to understand the structure-property relationship by the first principles calculation based on the observation results.


Scanning Transmission Electron Microscopy Misfit Dislocation Coincidence Site Lattice Coincidence Site Lattice Boundary Scanning Transmission Electron Microscopy Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. L.J. Allen, S.D. Findlay, M.P. Oxley, C.J. Rossouw, Lattice-resolution contrast from a focused coherent electron probe. Part I. Ultramicroscopy 96, 47 (2003)Google Scholar
  2. S. Azuma, N. Shibata, S.D. Findlay, T. Mizoguchi, T. Yamamoto, Y. Ikuhara, HAADF STEM observations of a Σ13 grain boundary in α-Al2O3 from two orthogonal directions. Phil. Mag. Lett. 90, 539 (2010).Google Scholar
  3. R.W. Balluffi, A. Brokman, A.H. King, CSL DSC lattice model for general crystal-crystal boundaries and their line defects. Acta Met. 30, 1453 (1982)Google Scholar
  4. D.G. Bandon, Structure of high-angle grain boundaries. Acta Metall. 8, 1221 (1966)Google Scholar
  5. P.F. Becher, G.S. Painter, M.J. Lance, S. Ii, Y. Ikuhara, Direct observations of debonding of reinforcing grains in silicon nitride ceramics sintered with yttria plus alumina additives. J. Am. Ceram. Soc. 88, 1222 (2005)Google Scholar
  6. J.B. Bilde-Sørensen, B.F. Lawlor, T. Geipel, P. Pirouz, A.H. Heuer, K.P.D. Lagerlöf, On basal slip and basal twinning in sapphire (α-Al2O3). 1. Basal slip revisited. Acta Mater. 44, 2145 (1996)Google Scholar
  7. W. Bollmann, Crystal Defects and Crystalline Interfaces (Springer-Verlag, Berline-Heidelberg-New York, 1970)Google Scholar
  8. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002)Google Scholar
  9. J.P. Buban, K. Matsunaga, J. Chen, N. Shibata, W.Y. Ching, T. Yamamoto, Y. Ikuhara, Grain boundary strengthening in alumina by rare earth impurities. Science 311, 212 (2006)Google Scholar
  10. I.-W. Chen, P.F. Becher, M. Mitomo, G. Petzow, T.-S. Yen (eds.), Silicon nitride ceramics scientific and technological advances. MRS Proc. 287 (Mater. Res. Soc. Pittsburgh, PA) (1993)Google Scholar
  11. M.F. Chisholm, S. Kumar, P. Hazzledine, Dislocations in complex materials. Science 307, 701 (2005)Google Scholar
  12. J. Cho, M.P. Harmer, M. Chan, J.M. Rickman, A.M. Thompson, Effect of yttrium and lanthanum on the tensile creep behavior of aluminum oxide. J. Am. Ceram. Soc. 80, 1013 (1997)Google Scholar
  13. S.Y. Choi, S.Y. Chung, T. Yamamoto, Y. Ikuhara, Direct determination of dopant site selectivity in ordered perovskite CaCu3Ti4O12 polycrystals by aberration-corrected STEM. Adv. Mater. 21, 885 (2009)Google Scholar
  14. D.R. Clarke, On the equilibrium thickness of intergranular glass phases in ceramic materials. J. Am. Ceram. Soc. 70, 15 (1987)Google Scholar
  15. D.R. Clarke, Varistor ceramics. J. Am. Ceram. Soc. 82, 485 (1999)Google Scholar
  16. S.-Y. Chung, S.-Y. Choi, T. Yamamoto, Y. Ikuhara, Atomic-scale visualization of antisite defects in LiFePO4. Phys. Rev. Lett. 100, 125502 (2008a)Google Scholar
  17. S.-Y. Chung, S.-Y. Choi, T. Yamamoto, Y. Ikuhara, Orientation-dependent arrangement of antisite defects in lithium iron (II) phosphate crystals. Angew. Chem. Int. Ed. 47, 1 (2008b)Google Scholar
  18. S. Fabris, C. Elsässer, Σ13 \((10\overline {1}4)\) twin in α-Al2O3: A model for a general grain boundary. Phys. Rev. B 64, 245117 (2001)Google Scholar
  19. S.D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, T. Yamamoto, Y. Ikuhara, Robust atomic resolution imaging of light elements using scanning transmission electron microscopy. Appl. Phys. Lett. 95, 191913 (2009)Google Scholar
  20. F. C. Frank, Crystal dislocations – elementary concepts and definitions. Phil. Mag. 42, 809 (1951)Google Scholar
  21. J.D. Gale, GULP: A computer program for the symmetry-adapted simulation of solids. J. Chem. Soc. Faraday Trans. 93, 629 (1997)Google Scholar
  22. T. Gemming, S. Nufer, W. Kurtz, M. Ruhle, Structure and chemistry of symmetrical tilt grain boundaries in α-Al2O3: I, bicrystals with “clean” interface. J. Am. Ceram. Soc. 86, 581 (2003)Google Scholar
  23. M. Haider, H. Rose, S. Uhlemann, B. Kabius, K. Urban, Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J. Electron. Microsc. 47, 395 (1998)Google Scholar
  24. M. Haruta, Size- and support-dependency in the catalysis of gold. Catal. Today 36, 153 (1997)Google Scholar
  25. C.M.B. Henderson, K.S. Knight, S.A.T. Redfern, B.J. Wood, High-temperature study of octahedral cation exchange in olivine by neutron powder diffraction. Science 271, 1713 (1996)Google Scholar
  26. M.J. Hoffmann, H. Gu, R.M. Cannon, Influence of the interfacial properties on the microstructural development and properties of silicon nitride ceramics. Interfacial Eng. Optimized Properties II 586, 65–74 (Mater. Res. Soc. Warrendale, PA, 2000)Google Scholar
  27. R. Huang, Y.H. Ikuhara, T. Mizoguchi, S.D. Findlay, A. Kuwabara, C.A.J. Fisher, H. Moriwake, H. Oki, T. Hirayama, Y. Ikuhara, Oxygen-vacancy ordering at surfaces of lithium manganese (III, IV) oxide spinel nanoparticles. Angewandte Chemie, in press (2011)Google Scholar
  28. R. Huang, T. Mizoguchi, K. Sugiura, H. Ohta, K. Koumoto, T. Hirayama, Y. Ikuhara, Direct observations of Ca ordering in Ca0.33CoO2 thin films with different superstructures. Appl. Phys. Lett. 93, 181907 (2008)Google Scholar
  29. Y. Ikuhara, Grain boundary and interface structures in ceramics. J. Ceram. Soc. Jpn. 109, S110 (2001)Google Scholar
  30. Y. Ikuhara, Nanowire design by dislocation technology. Prog. Mater. Sci. 54, 770 (2009)Google Scholar
  31. Y. Ikuhara, R. Huang, S.D. Findlay, T. Mizoguchi, N. Shibata, T. Hirayama, T. Yamamoto, H. Oki, New approach to characterize ceramics by cs-corrected STEM-Three dimensional observation and light elements visialization-AMTC Letters, vol. 2, p. 14 (2010) (ISSN 1882-9465)Google Scholar
  32. Y. Ikuhara, H. Kurishita, H. Yoshinaga, Grain boundary and high temperature strength of sintered SiC. J. Ceram. Soc. Jpn. Inter. Ed. 95, 592 (1987)Google Scholar
  33. Y. Ikuhara, H. Kurishita, H. Yoshinaga, Grain boundary structure and mechanical properties of covalent-bonded ceramics. in Proceedings of the 2nd International Conference on Composition Interfaces, Cleveland, Elsevier Science Publisher, 1988, p. 673Google Scholar
  34. Y. Ikuhara, P. Pirouz, High resolution transmission electron microscopy studies of metal/ceramics interfaces. Microsc. Res. Tech. 40, 206 (1998)Google Scholar
  35. Y. Ikuhara, P. Pirouz, A.H. Heuer, S. Yadavalli, C.P. Flynn, Structure of V-Al2O3 interfaces grown by molecular-beam epitaxy. Philos. Mag. A. 70, 75 (1994)Google Scholar
  36. Y. Ikuhara, P. Pirouz, S. Yadavalli, C.P. Flynn, Structure of V-MGO and MGO-V interfaces. Philos. Mag. A 72, 179 (1995)Google Scholar
  37. Y. Ikuhara, H. Suzuki, T. Suzuki, High-temperature deformation and fracture behavior of Al2O3-Y2O3 doped silicon nitride. Mater. Trans. JIM 37, 430 (1996)Google Scholar
  38. Y. Ikuhara, P. Thavorniti, T. Sakuma, Solute segregation at grain boundaries in superplastic SiO2-doped TZP. Acta Mater. 45, 5275 (1997)Google Scholar
  39. Y. Ikuhara, T. Watanabe, T. Saito, H. Yoshida, T. Sakuma, Atomic structure and chemical bonding state of sapphire bicrystal. Mater. Sci. Forum 294, 273 (1999)Google Scholar
  40. Y. Ikuhara, H. Yoshida, T. Sakuma, Impurity effects on grain boundary strength in structural ceramics. Mater. Sci. Eng. A319-321, 24–30 (2001)Google Scholar
  41. M. Imaeda, T. Mizoguchi, Y. Sato, H.S. Lee, S.D. Findlay, N. Shibata, T. Yamamoto, Y. Ikuhara, Atomic structure, electronic structure, and defect energetics in [001](310)Σ5 grain boundaries of SrTiO3 and BaTiO3. Phys. Rev. B 78, 245320 (2008)Google Scholar
  42. K. Kimoto, T. Asaka, T. Nagai, M. Saito, Y. Matsui, K. Ishizuka, Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450, 702 (2007)Google Scholar
  43. H.-J. Kleebe, Structure and chemistry of interfaces in Si3N4 ceramics studied by transmission electron microscopy. J. Ceram. Soc. Jpn. 105, 453 (1997)Google Scholar
  44. M. Kohyama, Atomic structures and properties of grain boundaries. Solid State Phys. 34, 803 (in Japanese) (1999)Google Scholar
  45. M. Kohyama, Computational studies of grain boundaries in covalent materials, Mode. Simul. Mater. Sci. Eng. 10, R31 (2002)Google Scholar
  46. M.L. Kronberg, Plastic deformation of single crystals of sapphire – basal slip and twinning. Acta Metall. 5, 507 (1957)Google Scholar
  47. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169 (1996)Google Scholar
  48. M.L. Kronberg, F.H. Wilson, Secondary recrystallization in copper. Met. Trans. 185, 501 (1949)Google Scholar
  49. K.P.D. Lagerlöf, A.H. Heuer, J. Castaing, J.P. Rivière, T.E. Mitchell, Slip and twinning in sapphire (α-Al2O3). J. Am. Ceram. Soc. 77, 385 (1994)Google Scholar
  50. K.P.D. Lagerlöf, T.E. Mitchell, A.H. Heuer, J.P. Riviere, J. Cadoz, J. Castaing, D.S. Phillips, Stacking-fault energy in sapphire (α-Al2O3). Acta Metall. 32, 97 (1984)Google Scholar
  51. J.M. LeBeau, S.D. Findlay, L.J. Allen, S. Stemmer, Quantitative atomic resolution scanning transmission electron microscopy. Phys. Rev. Lett. 100, 206101 (2008)Google Scholar
  52. G.V. Lewis, C.R.A. Catlow, Potential models for ionic oxides. J. Phys. C: Solid State Phys. 18, 1149 (1985)Google Scholar
  53. W. Losch, New model of grain-boundary failure in temper embrittled steel. Acta Metall. 27, 1885 (1979)Google Scholar
  54. K. Matsunaga, H. Nishimura, H. Muto, T. Yamamoto, Y. Ikuhara, Direct measurements of grain boundary sliding in yttrium-doped alumina bicrystals. Appl. Phys. Lett. 82, 1179 (2003)Google Scholar
  55. K. Matsunaga, T. Sasaki, N. Shibata, T. Mizoguchi, T. Yamamoto, Y. Ikuhara, Bonding nature of metal/oxide incoherent interfaces by first-principles calculations. Phys. Rev. B 74, 125423 (2006)Google Scholar
  56. J.W. Matthews, Epitaxial Growth, Part B, ed. by F.R.N. Nabarro (North-Holland, Amsterdam, 1979)Google Scholar
  57. D. McLean, Grain Boundaries in Metals (Oxford University Press, Oxford, 1957)Google Scholar
  58. T.E. Mitchell, B.J. Pletka, D.S. Phillips, A.H. Heuer, Climb dissociation of dislocations in sapphire (α-Al2O3). Phil. Mag. 34, 441 (1976)Google Scholar
  59. T. Mizoguchi, J.P. Buban, K. Matsunaga, T. Yamamoto, Y. Ikuhara, First-principles study on incidence direction, individual site character, and atomic projection dependences of ELNES for perovskite compounds. Ultramicroscopy 106, 92 (2006)Google Scholar
  60. S.I. Molina, D.L. Sales, P.L. Galindo, D. Fuster, Y. González, B. Alén, L. González, M. Varela, S.J. Pennycook, Column-by-column compositional mapping by Z-contrast imaging. Ultramicroscopy 109, 172 (2009)Google Scholar
  61. K. Mukae, K. Tsuda, I. Nagasawa, Non-ohmic properties of ZnO-rare earth metal oxide Co3O4 ceramics. Jpn. J. Appl. Phys. 16, 1361 (1977)Google Scholar
  62. D. A. Muller, L.F. Kourkoutis, M. Murfitt, J.H. Song, H.Y. Hwang, J. Silcox, N. Dellby, O.L. Krivanek, Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073 (2008)Google Scholar
  63. R. Nakamura, N. Ohashi, A. Imanishi, T. Osawa, Y. Matsumoto, H. Koinuma, Y. Nakato, Crystal-face dependences of surface band edges and hole reactivity, revealed by preparation of essentially atomically smooth and stable (110) and (100) n-TiO2 (rutile) surfaces. J. Phys. Chem. B 109, 1648 (2005)Google Scholar
  64. A. Nakamura, T. Yamamoto, Y. Ikuhara, Direct observation of basal dislocation in sapphire by HRTEM. Acta. Mater. 50, 101 (2002)Google Scholar
  65. P.D. Nellist, M.F. Chisholm, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z.S. Szilagyi, A.R. Lupini, A.Y. Borisevich, W.H. Sides, S.J. Pennycook, Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741 (2004)Google Scholar
  66. P.D. Nellist, S.J. Pennycook, Direct imaging of the atomic configuration of ultradispersed catalysts. Science 274, 413 (1996)Google Scholar
  67. F. Oba, H. Ohta, Y. Sato, H. Hosono, T. Yamamoto, Y. Ikuhara, Atomic structure of [0001]-tilt grain boundaries in ZnO: A high-resolution TEM study of fiber-textured thin films. Phys. Rev. B 70, 125415 (2004)Google Scholar
  68. H. Ohta, S.W. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, K. Koumoto, Giant thermoelectric Seebeck coefficient of two-dimensional electron gas in SrTiO3. Nat. Mater. 6, 129 (2007)Google Scholar
  69. H. Ohta, S. Kim, S. Ohta, K. Koumoto, M. Hirano, H. Hosono, Reactive solid-phase epitaxial growth of NaxCoO2 (x similar to 0.83) via lateral diffusion of Na into a cobalt oxide epitaxial layer. Cryst. Growth Des. 5, 25 (2005)Google Scholar
  70. G.B. Olson, M. Cohen, Interphase-boundary dislocations and the concept of coherency. Acta Met. 27, 1907 (1979)Google Scholar
  71. G.S. Painter, F.W. Averill, P.F. Becher, N. Shibata, K. van Benthem, S.J. Pennycook, First-principles study of rare earth adsorption at β-Si3N4 interfaces. Phys. Rev. B 78, 214206 (2008)Google Scholar
  72. J.J. Papike, M. Cameron, Crystal-chemistry of silicate minerals of geophysical interest. Rev. Geophys. Space Phys. 14, 37 (1976)Google Scholar
  73. S.J. Pennycook, D.E. Jesson, High-resolution incoherent imaging of crystals. Phys. Rev. Lett. 64, 938 (1990)Google Scholar
  74. S.J. Pennycook, D.E. Jesson, High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 14 (1991)Google Scholar
  75. L.M. Porter, R.F. Davis, A critical review of ohmic and rectifying contacts for silicon-carbide. Mater. Sci. Eng. B 34, 83 (1995)Google Scholar
  76. S. Ranganathan, On geometry of coincidence-site lattices. Acta Cryst. 21, 197 (1966)Google Scholar
  77. S.N. Rashkeev, A.R. Lupini, S.H. Overbury, S.J. Pennycook, S.T. Pantelides, Role of the nanoscale in catalytic CO oxidation by supported Au and Pt nanostructures. Phys. Rev. B. 76, 035438 (2007)Google Scholar
  78. W.T. Read, Dislocations in Crystals (McGraw-Hill, New York, NY, 1953)Google Scholar
  79. P.D. Robb, A.J. Craven, Column ratio mapping: A processing technique for atomic resolution high-angle annular dark-field (HAADF) images. Ultramicroscopy 109, 61 (2008)Google Scholar
  80. M. Roger, D.J.P. Morris, D.A. Tennant, M.J. Gutmann, J.P. Goff, J.-U. Hoffmann, R. Feyerherm, E. Dudzik, D. Prabhakaran, A.T. Boothroyd, N. Shannon, B. Lake, P.P. Deen, Patterning of sodium ions and the control of electrons in sodium cobaltate. Nature 445, 631 (2007)Google Scholar
  81. T. Sakuma, L. Shepard, Y. Ikuhara (eds.), Grain Boundary Engineering in Ceramics-from Grain Boundary Phenomena to Grain Boundary Quantum Structures, Ceram. Trans, vol. 118 (The American Ceramic Society, Columbus OH, 2000)Google Scholar
  82. R.L. Satet, M.J. Hoffmann, Grain growth anisotropy of beta-silicon nitride in rare-earth doped oxynitride glasses. J. Eur. Ceram. Soc. 24, 3437 (2004)Google Scholar
  83. Y. Sato, T. Yamamoto, Y. Ikuhara, Atomic structures and electrical properties of ZnO grain boundaries. J. Am. Ceram. Soc. 90, 337 (2007)Google Scholar
  84. Y. Sato, T. Mizoguchi, N. Shibata, T. Yamamoto, T. Hirayama, Y. Ikuhara, Atomic-scale segregation behavior of Pr at a ZnO [0001] Σ49 tilt grain boundary. Phys. Rev. B 80, 094114 (2009)Google Scholar
  85. Y. Sato, T. Mizoguchi, N. Shibata, M. Yodogawa, T. Yamamoto, Y. Ikuhara, Role of Pr segregation in acceptor-state formation at ZnO grain boundaries. Phys. Rev. Lett. 97, 106802 (2006)Google Scholar
  86. N. Shibata, M.F. Chisholm, A. Nakamura, S.J. Pennycook, T. Yamamoto, Y. Ikuhara, Nonstoichiometric dislocation cores in α-alumina. Science 316, 82 (2007)Google Scholar
  87. N. Shibata, S.D. Findlay, S. Azuma, T. Mizoguchi, T. Yamamoto, Y. Ikuhara, Atomic-scale imaging of individual dopant atoms in a buried interface. Nat. Mater. 8, 654 (2009)Google Scholar
  88. N. Shibata, A. Goto, S.-Y. Choi, T. Mizoguchi, S.D. Findlay, T. Yamamoto, Y. Ikuhara, Direct imaging of reconstructed atoms on TiO2 (110) surfaces. Science 322, 570 (2008)Google Scholar
  89. N. Shibata, A. Goto, K. Matsunaga, T. Mizoguchi, S.D. Findlay, T. Yamamoto, Y. Ikuhara, Interface structures of gold nanoparticles on TiO2 (110). Phys. Rev. Lett. 102, 136015 (2009)Google Scholar
  90. N. Shibata, F. Oba, T. Yamamoto, Y. Ikuhara, Structure, energy and solute segregation behaviour of [110] symmetric tilt grain boundaries in yttria-stabilized cubic zirconia. Phil. Mag. 84, 2381 (2004)Google Scholar
  91. N. Shibata, G.S. Painter, R.L. Satet, M.J. Hoffmann, S.J. Pennycook, P.F. Becher, Rare-earth adsorption at intergranular interfaces in silicon nitride ceramics: Subnanometer observations and theory. Phys. Rev. B 72 140101(R) (2005)Google Scholar
  92. N. Shibata, S.J. Pennycook, T.R. Gosnell, G.S. Painter, W.A. Shelton, P.F. Becher, Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions. Nature 428, 730 (2004)Google Scholar
  93. K. Sugiura, H. Ohta, Y. Ishida, R. Huang, T. Saito, Y. Ikuhara, K. Nomura, H. Hosono, K. Koumoto, Structural transformation of Ca-arrangements and carrier transport properties in Ca0.33CoO2 epitaxial films. Appl. Phys. Express 2, 035503 (2009)Google Scholar
  94. K. Sugiura, H. Ohta, K. Nomura, M. Hirano, H. Hosono, K. Koumoto, High electrical conductivity of layered cobalt oxide Ca3Co4O9 epitaxial films grown by topotactic ion-exchange method. Appl. Phys. Lett. 89, 032111 (2006)Google Scholar
  95. A.P. Sutton, R.W. Ballufi, Interfaces in Crystalline Materials (Oxford University Press, Oxford, 1995)Google Scholar
  96. A.P. Sutton, V. Vitek, On the structure of tilt grain-boundaries in cubic metals. 1. Symmetrical tilt boundaries. Phil. Trans. R. Soc. Lond. A309, 1 (1983)Google Scholar
  97. K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R.A. Dilanian, T. Sasaki, Superconductivity in two-dimensional CoO2 layers. Nature 422, 53 (2003)Google Scholar
  98. I. Tanaka, H.-J. Kleebe, M.K. Cinibulk, J. Bruley, D.R. Clarke, M. Ruhle, Calcium-concentration dependence of the intergranular film thickness in silicon-nitride. J. Am. Ceram. Soc. 77, 911 (1994)Google Scholar
  99. T. Tohei, T. Mizoguchi, H. Hiramatsu, Y. Kamihara, H. Hosono, Y. Ikuhara, Direct imaging of doped fluorine in LaFeAsO1−xFx superconductor by atomic scale spectroscopy. Appl. Phys. Lett. 95, 193107 (2009)Google Scholar
  100. S. Tsurekawa, S. Nitta, H. Nakashima, H. Yoshinaga, Grain-boundary structures in silicon-carbide – verification of the extended boundary concept. Interface Sci. 3, 75 (1995)Google Scholar
  101. S. Tsukimoto, K. Nitta, T. Sakai, M. Moriyama, M. Murakami, Correlation between the electrical properties and the interfacial microstructures of TiAl-based ohmic contacts to p-type 4H-SiC. J. Electron. Mater. 33 460 (2004b)Google Scholar
  102. S. Tsukimoto, T. Sakai, M. Murakami, Electrical properties and microstructure of ternary Ge/Ti/Al ohmic contacts to p-type 4H-SiC. J. Appl. Phys. 96, 4976 (2004a)Google Scholar
  103. M. Valden, X. Lai, D.W. Goodman, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281, 1647 (1998)Google Scholar
  104. K. van Benthem, A.R. Lupini, M. Kim, H.S. Baik, S. Doh, J.-H. Lee, M.P. Oxley, S.D. Findlay, L.J. Allen, J.T. Luck, S.J. Pennycook, Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl. Phys. Lett. 87, 034104 (2005)Google Scholar
  105. J.H. van der Merwe, On the stresses and energies associated with inter-crystalline boundaries. Proc. Phys. Soc. Lond. A63, 616 (1950)Google Scholar
  106. J.H. van der Merwe, Crystal interfaces. Part I. Semi-infinite crystals. J. Appl. Phys. 34, 117 (1963)Google Scholar
  107. M. Varela, S.D. Findlay, A.R. Lupini, H.M. Christen, A.Y. Borisevich, N. Dellby, O.L. Krivanek, P.D. Nellist, M.P. Oxley, L.J. Allen, S.J. Pennycook, Spectroscopic imaging of single atoms within a bulk solid. Phys. Rev. Lett. 92, 095502 (2004)Google Scholar
  108. P.M. Voyles, D.A. Muller, J.L. Grazul, P.H. Citrin, H.-J.L. Gossman, Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416, 826 (2002)Google Scholar
  109. Z. Wang, T. Kadohira, T. Tada, S. Watanabe, Nonequilibrium quantum transport properties of a silver atomic switch. Nano Lett. 7, 2688 (2007)Google Scholar
  110. Y. Wang, N.S. Rogado, R.J. Cava, N.P. Ong, Spin entropy as the likely source of enhanced thermopower in NaxCo2O4. Nature 423, 425 (2003)Google Scholar
  111. Z.C. Wang, M. Saito, S. Tsukimoto, Y. Ikuhara, Interface atomic-scale structure and its impact on quantum electron transport. Adv. Mater. 21, 4966 (2009)Google Scholar
  112. Z. Wang, S. Tsukimoto, M. Saito, Y. Ikuhara, SiC/Ti3SiC2 interface: Atomic structure, energetics, and bonding. Phys. Rev. B 79, 045318 (2009)Google Scholar
  113. G.B. Winkelman, C. Dwyer, T.S. Hudson, D. Nguyen-Manh, M. Döblinger, Three-dimensional organization of rare-earth atoms at grain boundaries in silicon nitride. Appl. Phys. Lett. 87, 061911 (2005)Google Scholar
  114. D. Wolf, in Materials Interfaces: Atomic-Level Structure and Properties, eds. by D. Wolf, S. Yip (Chapman & Hall, London, 1992), pp. 1–57Google Scholar
  115. H.X. Yang, Y.G. Shi, X. Liu, R.J. Xiao, H.F. Tian, J.Q. Li, Structural properties and cation ordering in layered hexagonal CaxCoO2. Phys. Rev. B 73, 014109 (2006)Google Scholar
  116. H. Yoshida, Y. Ikuhara, T. Sakuma, High-temperature creep resistance in rare-earth-doped, fine-grained Al2O3. J. Mater. Res. 13, 2597 (1998)Google Scholar
  117. H. Yoshida, Y. Ikuhara, T. Sakuma, High-temperature creep resistance in lanthanoid ion-doped polycrystalline Al2O3. Phil. Mag. Lett. 79, 249 (1999)Google Scholar
  118. H. Yoshida, Y. Ikuhara, T. Sakuma, Grain boundary electronic structure related to the high temperature creep resistance in polycrystalline Al2O3. Acta Metall. 50, 2955 (2002)Google Scholar
  119. A. Ziegler, J.C. Idrobo, M.K. Cinibulk, C. Kisielowski, N.D. Browning, R.O. Ritchie, Interface structure and atomic bonding characteristics in silicon nitride ceramics. Science 306, 1768 (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of Engineering InnovationThe University of TokyoTokyoJapan

Personalised recommendations