A Scan Through the History of STEM

  • Stephen J. Pennycook


The development of STEM is outlined from the first developments by Baron Manfred von Ardenne, through the first successful field emission gun STEM by Albert Crewe and his collaborators, to its widespread application today in the era of aberration correction. The review focuses on the development and understanding of incoherent imaging and electron energy loss spectroscopy at atomic resolution and will not include details on microanalysis, low loss imaging, or specialized modes such as cathodoluminescence. Although it attempts to cover all the major advances in approximately chronological order, undoubtedly there are omissions and an overemphasis on developments that the author is most familiar with from his own history.



The author would like to express his deep appreciation to L. A. Allen, O. L. Krivanek, and P. W. Hawkes for valuable comments on the chapter, to P. W. Hawkes and O. L. Krivanek for photographs of the microscopes in Figures 1–1 and 1–3, respectively, and to his many colleagues who have contributed to the work presented here, especially, L. A. Boatner, K. van Benthem, N. D. Browning, A. Y. Borisevich, M. F. Chisholm, H. M. Christen, N. Dellby, V. P. Dravid, G. Duscher, J. C. Idrobo, D.E. Jesson, N. de Jonge, O. L. Krivanek, J. T. Luck, A. R. Lupini, A. J. McGibbon, M. M. McGibbon, S. I. Molina, M. F. Murfitt, J. Narayan, P. D. Nellist, S. H. Oh, M. P. Oxley, S.T. Pantelides, Y. Peng, W. H. Sides, Z. S. Szilagyi, and M. Varela, which was supported largely by the Materials Sciences and Engineering Division, US Department of Energy.


  1. E. Abe, S.J. Pennycook, A.P. Tsai, Direct observation of a local thermal vibration anomaly in a quasicrystal. Nature 421, 347–350 (2003)CrossRefGoogle Scholar
  2. G. Ade, On the incoherent imaging in the scanning transmission electron microscope (STEM). Optik 49, 113–116 (1977)Google Scholar
  3. J.E. Allen, E.R. Hemesath, D.E. Perea, J.L. Lensch-Falk, Z.Y. Li, F. Yin, M.H. Gass, P. Wang, A.L. Bleloch, R.E. Palmer, L.J. Lauhon, High-resolution detection of Au catalyst atoms in Si nanowires. Nat. Nanotechnol. 3, 168–173 (2008)CrossRefGoogle Scholar
  4. L.J. Allen, S.D. Findlay, A.R. Lupini, M.P. Oxley, S.J. Pennycook, Atomic-resolution electron energy loss spectroscopy imaging in aberration corrected scanning transmission electron microscopy. Phys. Rev. Lett. 91, 105503 (2003a)CrossRefGoogle Scholar
  5. L.J. Allen, S.D. Findlay, M.P. Oxley, C.J. Rossouw, Lattice-resolution contrast from a focused coherent electron probe. Part I. Ultramicroscopy 96, 47–63 (2003b)CrossRefGoogle Scholar
  6. L.J. Allen, S.D. Findlay, M.P. Oxley, C. Witte, N.J. Zaluzec, Channeling effects in high-angular-resolution electron spectroscopy. Phys. Rev. B 73, 094104 (2006)Google Scholar
  7. L.J. Allen, T.W. Josefsson, C.J. Rossouw, Interaction delocalization in characteristic x-ray-emission from light-elements. Ultramicroscopy 55, 258–267 (1994)CrossRefGoogle Scholar
  8. D. Alloyeau, B. Freitag, S. Dag, L.W. Wang, C. Kisielowski, Atomic-resolution three-dimensional imaging of germanium self-interstitials near a surface: Aberration-corrected transmission electron microscopy. Phys. Rev. B 80, 014114 (2009)Google Scholar
  9. A. Amali, P. Rez, Theory of lattice resolution in high-angle annular dark-field images. Microsc. Microanal. 3, 28–46 (1997)Google Scholar
  10. S.C. Anderson, C.R. Birkeland, G.R. Anstis, D.J.H. Cockayne, An approach to quantitative compositional profiling at near-atomic resolution using high-angle annular dark field imaging. Ultramicroscopy 69, 83–103 (1997)CrossRefGoogle Scholar
  11. G.R. Anstis, D.Q. Cai, D.J.H. Cockayne, Limitations on the s-state approach to the interpretation of sub-angstrom resolution electron microscope images and microanalysis. Ultramicroscopy 94, 309–327 (2003)CrossRefGoogle Scholar
  12. I. Arslan, T.J.V. Yates, N.D. Browning, P.A. Midgley, Embedded nanostructures revealed in three dimensions. Science 309, 2195–2198 (2005)CrossRefGoogle Scholar
  13. A. Bakenfelder, I. Fromm, L. Reimer, R. Rennekamp, Contrast in the electron spectroscopic imaging mode of a TEM.3. Bragg contrast of crystalline specimens. J. Microsc.-Oxford 159, 161–177 (1990)CrossRefGoogle Scholar
  14. J. Barthel, A. Thust, Quantification of the information limit of transmission electron microscopes. Phys. Rev. Lett. 101, 200801 (2008)Google Scholar
  15. P.E. Batson Silicon L2,3 core absorption obtained at the buried Al/Si(111) interface. Phys. Rev. B 44, 5556–5561 (1991)CrossRefGoogle Scholar
  16. P.E. Batson, Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity. Nature 366, 727–728 (1993)CrossRefGoogle Scholar
  17. P.E. Batson, Atomic and electronic structure of a dissociated 60 degrees misfit dislocation in GexSi(1–x). Phys. Rev. Lett. 83, 4409–4412 (1999a)CrossRefGoogle Scholar
  18. P.E. Batson, Atomic resolution EELS analysis of a misfit dislocation at a GeSi/Si interface. Physica B 274, 593–597 (1999b)CrossRefGoogle Scholar
  19. P.E. Batson, N. Dellby, O.L. Krivanek, Sub-angstrom resolution using aberration corrected electron optics. Nature 418, 617–620 (2002)CrossRefGoogle Scholar
  20. W. Baumeister, M.H. Hahn, Electron microscopy of monomolecular layers of thorium atoms. Nature 241, 445–447 (1973)CrossRefGoogle Scholar
  21. P.F. Becher, G.S. Painter, N. Shibata, R.L. Satet, M.J. Hoffmann, S.J. Pennycook, Influence of additives on anisotropic grain growth in silicon nitride ceramics. Mater. Sci. Eng. A 422, 85–91 (2006)CrossRefGoogle Scholar
  22. V. Beck, A.V. Crewe, High-resolution imaging properties of STEM. Ultramicroscopy 1, 137–144 (1975)CrossRefGoogle Scholar
  23. M. Beer, E. Moudrianakis, Determination of base sequence in nucleic acids with the electron microscope: Visibility of a marker. Proc. Natl. Acad. Sci. USA. 48, 409–416 (1962)CrossRefGoogle Scholar
  24. G. Behan, E.C. Cosgriff, A.I. Kirkland, P.D. Nellist, Three-dimensional imaging by optical sectioning in the aberration-corrected scanning transmission electron microscope. Philos. Trans. R. Soc. A 367, 3825–3844 (2009)CrossRefGoogle Scholar
  25. S.D. Berger, S.J. Pennycook, Detection of nitrogen at (100) platelets in diamond. Nature 298, 635–637 (1982)CrossRefGoogle Scholar
  26. G. Black, E.H. Linfoot, Spherical aberration and the information content of optical images. Proc. R. Soc. London A 239, 522–540 (1957)CrossRefGoogle Scholar
  27. H. Boersch, Über die Kontraste von Atomen im Elektronenmikroskop. Z. Naturforschung 2a, 615–633 (1947)Google Scholar
  28. W. Bollmann, Interference effects in the electron microscopy of thin crystal foils. Phys. Rev. 103, 1588–1589 (1956)CrossRefGoogle Scholar
  29. A.Y. Borisevich, H.J. Chang, M. Huijben, M.P. Oxley, S. Okamoto, M.K. Niranjan, J.D. Burton, E.Y. Tsymbal, Y.H. Chu, P. Yu, R. Ramesh, S.V. Kalinin, S.J. Pennycook, Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys. Rev. Lett., 105, 087204 (2010)Google Scholar
  30. A.Y. Borisevich, A.R. Lupini, S.J. Pennycook, Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc. Natl. Acad. Sci. USA 103, 3044–3048 (2006a)CrossRefGoogle Scholar
  31. A.Y. Borisevich, A.R. Lupini, S. Travaglini, S.J. Pennycook, Depth sectioning of aligned crystals with the aberration-corrected scanning transmission electron microscope. J. Electron. Microsc. 55, 7–12 (2006b)CrossRefGoogle Scholar
  32. M. Bosman, V.J. Keast, J.L. Garcia-Munoz, D’A.J. Alfonso, S.D. Findlay, L.J. Allen, Two-dimensional mapping of chemical information at atomic resolution. Phys. Rev. Lett. 99, 086102 (2007)Google Scholar
  33. M.J. Bowers, J.R. McBride, M.D. Garrett, J.A. Sammons, A.D. Dukes, M.A. Schreuder, T.L. Watt, A.R. Lupini, S.J. Pennycook, S.J. Rosenthal, Structure and ultrafast dynamics of white-light-emitting CdSe nanocrystals. J. Am. Chem. Soc. 131, 5730–5731 (2009)CrossRefGoogle Scholar
  34. M. Brown, Scanning transmission electron microscopy: Microanalysis for the microelectronic age. J. Phys. F 11, 1–26 (1981)CrossRefGoogle Scholar
  35. N. D. Browning, J. P. Buban, H. O. Moltaji, S. J. Pennycook, G. Duscher, K. D. Johnson, R. P. Rodrigues, V. P. Dravid, (1999a) The influence of atomic structure on the formation of electrical barriers at grain boundaries in SrTiO3. Appl. Phys. Lett. 74, 2638–2640CrossRefGoogle Scholar
  36. N.D. Browning, J.P. Buban, P.D. Nellist, D.P. Norton, M.F. Chisholm, S.J. Pennycook, The atomic origins of reduced critical currents at [001] tilt grain boundaries in YBa2Cu3O7-δ thin films. Physica C 294, 183–193 (1998b)CrossRefGoogle Scholar
  37. N.D. Browning, J.P. Buban, C. Prouteau, G. Duscher, S.J. Pennycook, Investigating the atomic scale structure and chemistry of grain boundaries in high-Tc superconductors. Micron 30, 425–436 (1999b)CrossRefGoogle Scholar
  38. N.D. Browning, M.F. Chisholm, S.J. Pennycook, Atomic-resolution chemical-analysis using a scanning-transmission electron-microscope. Nature 366, 143–146 (1993a)CrossRefGoogle Scholar
  39. N.D. Browning, M.F. Chisholm, S.J. Pennycook, Atomic-resolution electron energy loss spectroscopy in the scanning transmission electron microscope, 27th Annual Proceedings of Microbeam Analysis Society (VCH, Los Angeles, 1993b), pp. S270–S271Google Scholar
  40. N.D. Browning, M.F. Chisholm, S.J. Pennycook, Atomic-resolution chemical analysis using a scanning transmission electron microscope (366, 143, 1993). Nature 444, 235–235 (2006)CrossRefGoogle Scholar
  41. N.D. Browning, M.F. Chisholm, S.J. Pennycook, D.P. Norton, D.H. Lowndes, Correlation between hole depletion and atomic-structure at high-angle grain-boundaries in YBa2Cu3O7-δ Physica C 212, 185–190 (1993c)CrossRefGoogle Scholar
  42. N.D. Browning, H.O. Moltaji, and J.P. Buban, Investigation of three-dimensional grain-boundary structures in oxides through multiple-scattering analysis of spatially resolved electron-energy-loss spectra. Phys. Rev. B 58, 8289–8300 (1998a)CrossRefGoogle Scholar
  43. N.D. Browning, S.J. Pennycook, M.F. Chisholm, M.M. McGibbon, A.J. McGibbon, Observation of structural units at symmetric [001] tilt boundaries in SrTiO3. Interface Sci. 2, 397–423 (1995)CrossRefGoogle Scholar
  44. J. Buban, K. Matsunaga, J. Chen, N. Shibata, W. Ching, T. Yamamoto, Y. Ikuhara, Grain boundary strengthening in alumina by rare earth impurities. Science 311, 212 (2006)CrossRefGoogle Scholar
  45. R.E. Burge, J.C. Dainty, Partially coherent image-formation in scanning-transmission electron-microscope (STEM). Optik 46, 229–240 (1976)Google Scholar
  46. R. Castaing, L. Henry, Filtrage magnetique des vitesses en microscopie electronique. Comptes Rendus Hebdomadaires Des Seances De L’Academie Des Sciences Serie B 255, 76–78 (1962)Google Scholar
  47. D. Cherns, A. Howie, M.H. Jacobs, Characteristic x-ray production in thin crystals. Z. Naturforsch. A 28, 565–571 (1973)Google Scholar
  48. M.F. Chisholm, N.D. Browning, S.J. Pennycook, R. Jebasinski, S. Mantl, Z-contrast investigation of the ordered atomic interface of CoSi2/Si(001) layers. Appl. Phys. Lett. 64, 3608–3610 (1994a)CrossRefGoogle Scholar
  49. M.F. Chisholm, A. Maiti, S.J. Pennycook, S.T. Pantelides, Atomic configurations and energetics of arsenic impurities in a silicon grain boundary. Phys. Rev. Lett. 81, 132–135 (1998)CrossRefGoogle Scholar
  50. M.F. Chisholm, S.J. Pennycook, Structural origin of reduced critical currents at YBa2Cu3O7-Δ grain-boundaries. Nature 351, 47–49 (1991)CrossRefGoogle Scholar
  51. M.F. Chisholm, S.J. Pennycook, Direct imaging of dislocation core structures by Z-contrast STEM. Philos. Mag. 86, 4699–4725 (2006)CrossRefGoogle Scholar
  52. M.F. Chisholm, S.J. Pennycook, R. Jebasinski, S. Mantl, New interface structure for A-type CoSi2/Si(111). Appl. Phys. Lett. 64, 2409–2411 (1994b)CrossRefGoogle Scholar
  53. S.Y. Chung, S.Y. Choi, T. Yamamoto, Y. Ikuhara, Atomic-scale visualization of antisite defects in LiFePO4. Phys. Rev. Lett. 100, 125502 (2008)Google Scholar
  54. S.Y. Chung, S.Y. Choi, T. Yamamoto, Y. Ikuhara, Orientation-dependent arrangement of antisite defects in lithium iron(II) phosphate crystals. Ang. Chem.-Int. Edn. 48, 543–546 (2009)CrossRefGoogle Scholar
  55. M.D. Cole, J.W. Wiggins, M. Beer, Molecular microscopy of labeled polynucleotides: stability of osmium atoms. J. Mol. Biol. 117, 387–400 (1977)CrossRefGoogle Scholar
  56. C. Colliex, An illustrated review of various factors governing the high spatial-resolution capabilities in EELS microanalysis. Ultramicroscopy 18, 131–150 (1985)CrossRefGoogle Scholar
  57. C. Colliex, V.E. Cosslett, R.D. Leapman, P. Trebbia, Contribution of electron energy loss spectroscopy to the development of analytical electron microscopy. Ultramicroscopy 1, 301–315 (1976)CrossRefGoogle Scholar
  58. C. Colliex, C. Jeanguillaume, C. Mory, Unconventional modes for STEM imaging of biological structures. J. Ultrastruct. Res. 88, 177–206 (1984)CrossRefGoogle Scholar
  59. C. Colliex, B. Jouffrey, Diffusion inelastique des electrons dans un solide par excitation de niveaux atomiques profonds – I. Spectres de pertes energie. Philos. Mag. 25, 491–511 (1972)CrossRefGoogle Scholar
  60. C. Colliex, P. Trebbia, Performance and applications of electron energy loss spectroscopy in STEM. Ultramicroscopy 9, 259–266 (1982)CrossRefGoogle Scholar
  61. E.C. Cosgriff, A.J. D’Alfonso, L.J. Allen, S.D. Findlay, A.I. Kirkland, P.D. Nellist, Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, part I: Elastic scattering. Ultramicroscopy 108, 1558–1566 (2008)CrossRefGoogle Scholar
  62. E.C. Cosgriff, P.D. Nellist, A Bloch wave analysis of optical sectioning in aberration-corrected STEM. Ultramicroscopy 107, 626–634 (2007)CrossRefGoogle Scholar
  63. E.C. Cosgriff, M.P. Oxley, L.J. Allen, S.J. Pennycook, The spatial resolution of imaging using core-loss spectroscopy in the scanning transmission electron microscope. Ultramicroscopy 102, 317–326 (2005)CrossRefGoogle Scholar
  64. V.E. Cosslett, Possibilities and limitations for the differentiation of elements in the electron microscope. Lab. Invest. 14, 1009–1019 (1965)Google Scholar
  65. J.M. Cowley, Image contrast in a transmission scanning electron microscope. Appl. Phys. Lett. 15, 58–59 (1969)CrossRefGoogle Scholar
  66. J.M. Cowley, High-resolution dark-field electron-microscopy. 1. Useful approximations. Acta Cryst. A, A 29, 529–536 (1973)CrossRefGoogle Scholar
  67. J.M. Cowley, Scanning-transmission electron-microscopy of thin specimens. Ultramicroscopy 2, 3–16 (1976)CrossRefGoogle Scholar
  68. J.M. Cowley, Scanning transmission electron microscopy and microdiffraction techniques. Bull. Mater. Sci. 6, 477–490 (1984)CrossRefGoogle Scholar
  69. J.M. Cowley, High-resolution electron-microscopy and microdiffraction. Ultramicroscopy 18, 11–17 (1985)CrossRefGoogle Scholar
  70. J.M. Cowley, Electron-diffraction phenomena observed with a high-resolution STEM instrument. J. Electron Microsc. Tech. 3, 25–44 (1986a)CrossRefGoogle Scholar
  71. J.M. Cowley, in Principles of Analytical Electron Microscopy, ed. by J.J. Hren, J.I. Goldstein, D.C. Joy (Plenum, New York, NY, 1986b), pp. 343–368Google Scholar
  72. J.M. Cowley, in High Resolution Electron Microscopy and Associated Techniques, 1 st edn, ed. by P.R. Buseck, J.M. Cowley, L. Eyring (Oxford University Press, New York, NY, 1988), pp. 38–57Google Scholar
  73. J.M. Cowley, A.Y. Au, Diffraction by crystals with planar faults. 3. Structure analyses using microtwins. Acta Cryst. A 34, 738–743 (1978)CrossRefGoogle Scholar
  74. J.M. Cowley, D.J. Smith, The present and future of high-resolution electron-microscopy. Acta Cryst. A 43, 737–751 (1987)CrossRefGoogle Scholar
  75. J.M. Cowley, J.C.H. Spence, Innovative imaging and micro-diffraction in STEM. Ultramicroscopy 3, 433–438 (1978)CrossRefGoogle Scholar
  76. J.M. Cowley, J.C.H. Spence, Convergent beam electron micro-diffraction from small crystals. Ultramicroscopy 6, 359–366 (1981)Google Scholar
  77. A.J. Craven, C. Colliex, High-resolution energy filtered images in STEM. J. Microsc. Spect. Elec. 2, 511–522 (1977)Google Scholar
  78. A.J. Craven, J.M. Gibson, A. Howie, D.R. Spalding, Study of single-electron excitations by electron-microscopy. 1. Image-contrast from delocalized excitations. Philos. Mag. A 38, 519–527 (1978)CrossRefGoogle Scholar
  79. Core Research for Evolutional Science and Technology. (accessed Nov. 3, 2010)
  80. A.V. Crewe, Scanning electron microscopes – is high resolution possible. Science 154, 729–738 (1966)CrossRefGoogle Scholar
  81. A.V. Crewe, High resolution scanning microscopy of biological specimens. Philos. Trans. R. Soc. B 261, 61–70 (1971)CrossRefGoogle Scholar
  82. A.V. Crewe, Scanning-transmission electron-microscopy. J. Microsc.-Oxford 100, 247–259 (1974)CrossRefGoogle Scholar
  83. A.V. Crewe, Direct imaging of single atoms and molecules using the STEM. Chemica Scripta 14, 17–20 (1979)Google Scholar
  84. A.V. Crewe, High-resolution scanning-transmission electron-microscopy. Science 221, 325–330 (1983)CrossRefGoogle Scholar
  85. A.V. Crewe, in Advances in Imaging and Electron Physics, ed. by P.W. Hawkes (Elsevier, Amsterdam, The Netherlands, 2009), pp. 1–61Google Scholar
  86. A.V. Crewe, D.A. Crewe, O.H. Kapp, Inexact 3-dimensional reconstruction of a biological macromolecule from a restricted number of projections. Ultramicroscopy 13, 365–371 (1984)CrossRefGoogle Scholar
  87. A.V. Crewe, M. Isaacson, D. Johnson, Electron energy loss spectra of nucleic acid bases. Nature 231, 262–263 (1971)CrossRefGoogle Scholar
  88. A.V. Crewe, J.P. Langmore, M.S. Isaacson, in Physical Aspects of Electron Microscopy and Microbeam Analysis, ed. by B.M. Siegel, D.R. Beaman (Wiley, New York, NY, 1975), pp. 47–62Google Scholar
  89. A.V. Crewe, J. Wall, A scanning microscope with 5 Å resolution. J. Mol. Biol. 48, 375–393 (1970)CrossRefGoogle Scholar
  90. A.V. Crewe, J. Wall, J. Langmore, Visibility of single atoms. Science 168, 1338–1340 (1970)CrossRefGoogle Scholar
  91. A.V. Crewe, J. Wall, L.M. Welter, A high-resolution scanning transmission electron microscope. J. Appl. Phys. 39, 5861–5868 (1968)CrossRefGoogle Scholar
  92. M.D. Croitoru, D. Van Dyck, S. Van Aert, S. Bals and J. Verbeeck, An efficient way of including thermal diffuse scattering in simulation of scanning transmission electron microscopic images, Ultramicroscopy, 106, 933–940 (2006)Google Scholar
  93. P.A. Crozier, M. Catalano, R. Cingolani, A modeling and convolution method to measure compositional variations in strained alloy quantum dots. Ultramicroscopy 94, 1–18 (2003)CrossRefGoogle Scholar
  94. S.L. Cundy, A. Howie, U. Valdrè, Preservation of electron microscope image contrast after inelastic scattering. Philos. Mag. 20, 147–163 (1969)CrossRefGoogle Scholar
  95. S.L. Cundy, A.J. Metherel, M.J. Whelan, An energy analysing electron microscope. J. Sci. Instrum. 43, 712–715 (1966)CrossRefGoogle Scholar
  96. S.L. Cundy, A.J. Metherel, M.J. Whelan, Contrast preserved by elastic and quasi-elastic scattering of fast electrons near Bragg beams. Philos. Mag. 15, 623–630 (1967)CrossRefGoogle Scholar
  97. A.J. D’Alfonso, E.C. Cosgriff, S.D. Findlay, G. Behan, A.I. Kirkland, P.D. Nellist, L.J. Allen, Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, part II: Inelastic scattering. Ultramicroscopy 108, 1567–1578 (2008)CrossRefGoogle Scholar
  98. A.J. D’Alfonso, S.D. Findlay, M.P. Oxley, S.J. Pennycook, K. van Benthem, L.J. Allen, Depth sectioning in scanning transmission electron microscopy based on core-loss spectroscopy. Ultramicroscopy 108, 17–28 (2007)CrossRefGoogle Scholar
  99. N. De Jonge, R. Sougrat, B.M. Northan, S.J. Pennycook, Three-dimensional scanning transmission electron microscopy of biological specimens. Microsc. Microanal. 16, 54–63 (2010)CrossRefGoogle Scholar
  100. N. de Jonge, R. Sougret, D.B. Peckys, A.R. Lupini, S.J. Pennycook, in Nanotechnology in Biology and Medicine, ed. by T. Vo-Dinh (Taylor and Francis, Boca Raton, FL, 2007), pp. 13.11–13.27Google Scholar
  101. N. Dellby, O.L. Krivanek, P.D. Nellist, P.E. Batson, A.R. Lupini, Progress in aberration-corrected scanning transmission electron microscopy. J. Electron. Microsc. 50, 177–185 (2001)CrossRefGoogle Scholar
  102. E.C. Dickey, V.P. Dravid, P.D. Nellist, D.J. Wallis, S.J. Pennycook, Three-dimensional atomic structure of NiO-ZrO2(cubic) interfaces. Acta Mater. 46, 1801–1816 (1998)CrossRefGoogle Scholar
  103. E.C. Dickey, V.P. Dravid, P.D. Nellist, D.J. Wallis, S.J. Pennycook, A. Revcolevschi, Structure and bonding at Ni-ZrO2 (cubic) interfaces formed by the reduction of a NiO-ZrO2 (cubic) composite. Microsc. Microanal. 3, 443–450 (1997)Google Scholar
  104. A.C. Diebold, B. Foran, C. Kisielowski, D.A. Muller, S.J. Pennycook, E. Principe, S. Stemmer, Thin dielectric film thickness determination by advanced transmission electron microscopy. Microsc. Microanal. 9, 493–508 (2003)CrossRefGoogle Scholar
  105. C. Dinges, A. Berger, H. Rose, Simulation of TEM images considering phonon and electronic excitations. Ultramicroscopy 60, 49–70 (1995)CrossRefGoogle Scholar
  106. A.M. Donald, A.J. Craven, Study of grain-boundary segregation in Cu-Bi alloys using STEM. Philos. Mag. A 39, 1–11 (1979)CrossRefGoogle Scholar
  107. J. Dubochet, Appendix to: Klug, A. Direct imaging of atoms in crystals and molecules – status and prospects for biological sciences. Chemica Scripta 14, 291–293 (1979)Google Scholar
  108. G. Duscher, N.D. Browning, S.J. Pennycook, Atomic column resolved electron energy-loss spectroscopy. Phys. Stat. Solidi A 166, 327–342 (1998a)CrossRefGoogle Scholar
  109. G. Duscher, J.P. Buban, N.D. Browning, M.F. Chisholm, S.J. Pennycook, The electronic structure of pristine and doped (100) tilt grain boundaries in SrTiO3. Interface Sci. 8, 199–208 (2000)CrossRefGoogle Scholar
  110. G. Duscher, M.F. Chisholm, U. Alber, M. Ruhle, Bismuth-induced embrittlement of copper grain boundaries. Nat. Mat. 3, 621–626 (2004)CrossRefGoogle Scholar
  111. G. Duscher, S.J. Pennycook, N.D. Browning, R. Rupangudi, C. Takoudis, H.J. Gao, R. Singh, in Characterization and Metrology for ULSI Technology: 1998 International Conference ed. by D.G. Seiler, A.C. Diebold, W.M. Bullis, T.J. Shaffner, R. Mcdonald, E.J. Walters, American Institute of Physics, Melville, NY, v.449, (1998b), pp. 191–195Google Scholar
  112. N. Duxbury, U. Bangert, P. Dawson, E.J. Thrush, W. Van der Stricht, K. Jacobs, I. Moerman, Indium segregation in InGaN quantum-well structures. Appl. Phys. Lett. 76, 1600 (2000)CrossRefGoogle Scholar
  113. C. Dwyer, J. Etheridge, Scattering of Å-scale electron probes in silicon. Ultramicroscopy 96, 343–360 (2003)CrossRefGoogle Scholar
  114. C. Dwyer, A. Ziegler, N. Shibata, G.B. Winkelman, R.L. Satet, M.J. Hoffmann, M.K. Cinibulk, P.F. Becher, G.S. Painter, N.D. Browning, D.J.H. Cockayne, R.O. Ritchie, S.J. Pennycook, Interfacial structure in silicon nitride sintered with lanthanide oxide. J. Mat. Sci. 41, 4405–4412 (2006)CrossRefGoogle Scholar
  115. R.F. Egerton, Inelastic-scattering and energy filtering in transmission electron-microscope. Philos. Mag. 34, 49–65 (1976)CrossRefGoogle Scholar
  116. R.F. Egerton, Inelastic-scattering of 80 keV electrons in amorphous carbon. Philos. Mag. 31, 199–215 (1975)CrossRefGoogle Scholar
  117. R.F. Egerton, Formulas for light-element microanalysis by electron energy-loss spectrometry. Ultramicroscopy 3, 243–251 (1978a)CrossRefGoogle Scholar
  118. R.F. Egerton, Simple electron spectrometer for energy analysis in transmission microscope. Ultramicroscopy 3, 39–47 (1978b)CrossRefGoogle Scholar
  119. R.F. Egerton, Thickness dependence of the STEM ratio image. Ultramicroscopy 10, 297–299 (1982)CrossRefGoogle Scholar
  120. R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope (Plenum Press, New York, NY, 1996)CrossRefGoogle Scholar
  121. R.F. Egerton, Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy. Ultramicroscopy 107, 575–586 (2007)CrossRefGoogle Scholar
  122. R.F. Egerton, J.G. Philip, P.S. Turner, M.J. Whelan, Modification of a transmission electron-microscope to give energy-filtered images and diffraction patterns, and electron-energy loss spectra. J. Phys. E. 8, 1033–1037 (1975)CrossRefGoogle Scholar
  123. R.F. Egerton, M.J. Whelan, Electron-energy loss spectrum and band-structure of diamond. Philos. Mag. 30, 739–749 (1974)CrossRefGoogle Scholar
  124. J.J. Einspahr, P.M. Voyles, Prospects for 3D, nanometer-resolution imaging by confocal STEM. Ultramicroscopy 106, 1041–1052 (2006)CrossRefGoogle Scholar
  125. C.B. Eisenhandler, B.M. Siegel, Imaging of single atoms with the electron microscope by phase contrast. J. Appl. Phys. 37, 1613–1620 (1966)CrossRefGoogle Scholar
  126. A. Engel, Molecular weight determination by scanning transmission electron microscopy. Ultramicroscopy 3, 273 (1978)CrossRefGoogle Scholar
  127. A. Engel, in Advances in Imaging and Electron Physics, ed. by P.W. Hawkes (Elsevier, Amsterdam, The Netherlands, 2009), pp. 357–386Google Scholar
  128. A. Engel, W. Baumeister, W.O. Saxton, Mass mapping of a protein complex with the scanning transmission electron microscope. Proc. Natl. Acad. Sci. 79, 4050 (1982)CrossRefGoogle Scholar
  129. A. Engel, J. Dubochet, E. Kellenberger, Some progress in the use of a scanning transmission electron microscope for the observation of biomacromolecules. J. Ultrastruct. Res. 57, 322 (1976)CrossRefGoogle Scholar
  130. A. Engel, J.W. Wiggins, D.C. Woodruff, Comparison of calculated images generated by 6 modes of transmission electron-microscopy. J. Appl. Phys. 45, 2739–2747 (1974)CrossRefGoogle Scholar
  131. R. Erni, N.D. Browning, Quantification of the size-dependent energy gap of individual CdSe quantum dots by valence electron energy-loss spectroscopy. Ultramicroscopy 107, 267–273 (2007)CrossRefGoogle Scholar
  132. R. Erni, H. Heinrich, G. Kostorz, Quantitative characterisation of chemical inhomogeneities in Al-Ag using high-resolution Z-contrast STEM. Ultramicroscopy 94, 125–133 (2003)CrossRefGoogle Scholar
  133. R. Erni, M.D. Rossell, C. Kisielowski, U. Dahmen, Atomic-resolution imaging with a sub-50-pm electron probe. Phys. Rev. Lett. 102, 096101 (2009)Google Scholar
  134. U. Falke, A. Bleloch, M. Falke, Teichert, S. Atomic structure of a (2 × 1) reconstructed NiSi2/Si(001) interface. Phys. Rev. Lett. 92, 116103 (2004)Google Scholar
  135. M. Falke, U. Falke, A. Bleloch, S. Teichert, G. Beddies, H.J. Hinneberg, Real structure of the CoSi2/Si(001) interface studied by dedicated aberration-corrected scanning transmission electron microscopy. Appl. Phys. Lett. 86, 203103 (2005)Google Scholar
  136. X. Fan, E.C. Dickey, P.C. Eklund, K.A. Williams, L. Grigorian, R. Buczko, S.T. Pantelides, S.J. Pennycook, Atomic arrangement of iodine atoms inside single-walled carbon nanotubes. Phys. Rev. Lett. 84, 4621–4624 (2000)CrossRefGoogle Scholar
  137. X. Fan, E.C. Dickey, S.J. Pennycook, M.K. Sunkara, Z-contrast imaging and electron energy-loss spectroscopy analysis of chromium-doped diamond-like carbon films. Appl. Phys. Lett. 75, 2740–2742 (1999)CrossRefGoogle Scholar
  138. J. Fertig, H. Rose, A reflection on partial coherence in electron microscopy. Ultramicroscopy 2, 269–279 (1977)CrossRefGoogle Scholar
  139. J. Fertig, H. Rose, Resolution and contrast of crystalline objects in high-resolution scanning-transmission electron-microscopy. Optik 59, 407–429 (1981)Google Scholar
  140. P.F. Fewster, V. Holy, D. Zhi, Composition determination in quantum dots with in-plane scattering compared with STEM and EDX analysis. J. Phys. D. 36, A217-A221 (2003)CrossRefGoogle Scholar
  141. S.D. Findlay, L.J. Allen, M.P. Oxley, C.J. Rossouw, Lattice-resolution contrast from a focused coherent electron probe. Part II. Ultramicroscopy 96, 65–81 (2003)CrossRefGoogle Scholar
  142. S.D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, T. Yamamoto, Y. Ikuhara, Robust atomic resolution imaging of light elements using scanning transmission electron microscopy. Appl. Phys. Lett. 95, 191913 (2009)Google Scholar
  143. R. Fowler, L. Nordheim, Electron emission in intense electric fields. Proc. R. Soc. A. 119, 173–181 (1928)CrossRefGoogle Scholar
  144. B. Freitag, S. Kujawa, P. Mul, J. Ringnalda, P. Tiemeijer, Breaking the spherical and chromatic aberration barrier in transmission electron microscopy. Ultramicroscopy 102, 209–214 (2005)CrossRefGoogle Scholar
  145. S. Frigo, Z. Levine, N.J. Zaluzec, Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy. Appl. Phys. Lett. 81, 2112 (2002)CrossRefGoogle Scholar
  146. F. Fujimoto, Y. Kainuma, Inelastic scattering of fast electrons by thin crystals. J. Phys. Soc. Jpn. 18, 1792 (1963)CrossRefGoogle Scholar
  147. A. Fukuhara, Inelastic scattering of electrons with a definite momentum transfer in a crystal. J. Phys. Soc. Jpn. 18, 496 (1963)CrossRefGoogle Scholar
  148. J.M. Gibson, A. Howie, Investigation of local-structure and composition in amorphous solids by high-resolution electron-microscopy. Chemica Scripta 14, 109–116 (1979)Google Scholar
  149. W. Glaser, Bildentstehung und Auflösungsvermögen des Elektronenmikroskops vom Standpunkt der Wellenmechanik. Z. Phys. A. 121, 647–666 (1943)Google Scholar
  150. D.M. Graham, A. Soltani-Vala, P. Dawson, M.J. Godfrey, T.M. Smeeton, J.S. Barnard, M.J. Kappers, C.J. Humphreys, E.J. Thrush, Optical and microstructural studies of InGaN/GaN single-quantum-well structures. J. Appl. Phys. 97, 103508 (2005)CrossRefGoogle Scholar
  151. L. Grigorian, K.A. Williams, S. Fang, G.U. Sumanasekera, A.L. Loper, E.C. Dickey, S.J. Pennycook, P.C. Eklund, Reversible intercalation of charged iodine chains into carbon nanotube ropes. Phys. Rev. Lett. 80, 5560–5563 (1998)CrossRefGoogle Scholar
  152. F. Haguenau, P.W. Hawkes, J.L. Hutchison, B. Satiat-Jeunemaitre, G.T. Simon, D.B. Williams, Key events in the history of electron microscopy. Microsc. Microanal. 9, 96–138 (2003)CrossRefGoogle Scholar
  153. M. Haider, P. Hartel, H. Müller, Current and future aberration correctors for the improvement of resolution in electron microscopy. Philos. Trans. R. Soc. A 367, 3665–3682 (2009)CrossRefGoogle Scholar
  154. M. Haider, H. Rose, S. Uhlemann, B. Kabius, K. Urban, Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J. Electron. Microsc. 47, 395–405 (1998a)CrossRefGoogle Scholar
  155. M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, K. Urban, A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 53–60 (1998b)CrossRefGoogle Scholar
  156. M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban, Electron microscopy image enhanced. Nature 392, 768–769 (1998c)CrossRefGoogle Scholar
  157. M. Haider, S. Uhlemann, J. Zach, Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy 81, 163–175 (2000)CrossRefGoogle Scholar
  158. C.R. Hall, Scattering of high energy electrons by thermal vibrations of crystals. Philos. Mag. 12, 815–826 (1965)CrossRefGoogle Scholar
  159. C.R. Hall, P.B. Hirsch, Effect of thermal diffuse scattering on propagation of high energy electrons through crystals. Proc. R. Soc. London A 286, 158–177 (1965)CrossRefGoogle Scholar
  160. E.L. Hall, D. Imeson, J.B. Vander Sande, On producing high-spatial-resolution composition profiles via scanning transmission electron microscopy. Philos. Mag. A 43, 1569–1585 (1981)CrossRefGoogle Scholar
  161. P. Hartel, H. Rose, C. Dinges, Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63, 93–114 (1996)CrossRefGoogle Scholar
  162. H. Hashimoto, A. Howie, M.J. Whelan, Anomalous electron absorption effects in metal foils: Theory and comparison with experiment. Proc. R. Soc. London A 269, 80–103 (1962)CrossRefGoogle Scholar
  163. H. Hashimoto, A. Kumao, K. Hino, H. Yotsumoto, A. Ono, Images of thorium atoms in transmission electron microscopy. Jap. J. Appl. Phys. 10, 1115–1116 (1971)CrossRefGoogle Scholar
  164. P.W. Hawkes, Coherence in electron optics. Adv. Opt. Electron. Microsc.7, 101–184 (1978)Google Scholar
  165. P.W. Hawkes (ed.), in The Beginnings of Electron-Microscopy. Advances in Imaging and Electron Physics, Suppl 16 (Academic, San Diego, CA, 1985)Google Scholar
  166. P.W. Hawkes, Aberration correction past and present. Philos. Trans. R. Soc. A 367, 3637–3664 (2009)CrossRefGoogle Scholar
  167. R.D. Heidenreich, Electron reflections in MgO crystals with the electron microscope. Phys. Rev. 62, 291–292 (1942)CrossRefGoogle Scholar
  168. R.D. Heidenreich, Electron microscope and diffraction study of metal crystal textures by means of thin sections. J. Appl. Phys. 20, 993–1010 (1949)CrossRefGoogle Scholar
  169. R.D. Heidenreich, Attenuation of fast electrons in crystals and anomalous transmission. J. Appl. Phys. 33, 2321–2333 (1962)CrossRefGoogle Scholar
  170. R.D. Heidenreich, Electron phase contrast images of molecular detail. J. Electron. Microsc. 16, 23–38 (1967)Google Scholar
  171. R.M. Henkelman, F.P. Ottensmeyer, Visualization of single heavy atoms by dark field electron microscopy. Proc. Natl. Acad. Sci. USA. 68, 3000–3004 (1971)CrossRefGoogle Scholar
  172. Y.W. Heo, C.R. Abernathy, K. Pruessner, W. Sigmund, D.P. Norton, M. Overberg, F. Ren, M.F. Chisholm, Structure and optical properties of cored wurtzite (Zn,Mg)O heteroepitaxial nanowires. J. Appl. Phys. 96, 3424–3428 (2004)CrossRefGoogle Scholar
  173. K.H. Herrmann, Present state of instrumentation in high-resolution electron-microscopy. J. Phys. E. 11, 1076–1091 (1978)CrossRefGoogle Scholar
  174. J. Hillier, A discussion of the fundamental limit of performance of an electron microscope. Phys. Rev. 60, 743–745 (1941)CrossRefGoogle Scholar
  175. J. Hillier, On microanalysis by electrons. Phys. Rev. 64, 318–319 (1943)CrossRefGoogle Scholar
  176. J. Hillier, R.F. Baker, The observation of crystalline reflections in electron microscope images. Phys. Rev. 61, 722–723 (1942)CrossRefGoogle Scholar
  177. S. Hillyard, R.F. Loane, J. Silcox, Annular dark-field imaging – resolution and thickness effects. Ultramicroscopy 49, 14–25 (1993)CrossRefGoogle Scholar
  178. S. Hillyard, J. Silcox, Thickness effects in ADF STEM zone-axis images. Ultramicroscopy 52, 325–334 (1993)CrossRefGoogle Scholar
  179. P.B. Hirsch, R.W. Horne, M.J. Whelan, Direct observations of the arrangement and motion of dislocations in aluminium. Philos. Mag. 1, 677–684 (1956)CrossRefGoogle Scholar
  180. P.B. Hirsch, A. Howie, M.J. Whelan, A kinematical theory of diffraction contrast of electron transmission microscope images of dislocations and other defects. Philos. Trans. R. Soc. A. 252, 499–529 (1960)CrossRefGoogle Scholar
  181. F. Hofer, W. Grogger, G. Kothleitner, P. Warbichler, Quantitative analysis of EFTEM elemental distribution images. Ultramicroscopy 67, 83–103 (1997)CrossRefGoogle Scholar
  182. L. Houben, A. Thust, K. Urban, Atomic-precision determination of the reconstruction of a 90° tilt boundary in YBa2Cu3O7-δ by aberration corrected HRTEM. Ultramicroscopy 106, 200–214 (2006)CrossRefGoogle Scholar
  183. P.V.C. Hough, I.A. Mastrangelo, J.S. Wall, J.F. Hainfeld, M. Sawadogo, R.G. Roeder, The gene-specific initiation factor USF (upstream stimulatory factor) bound at the adenovirus type 2 major late promoter: Mass and three-dimensional structure. Proc. Natl. Acad. Sci. USA. 84, 4826–4830 (1987)CrossRefGoogle Scholar
  184. A. Howie, Inelastic scattering of electrons by crystals I. The theory of small-angle inelastic scattering. Proc. R. Soc. Lond. A 271, 268–287 (1963)Google Scholar
  185. A. Howie, Image-contrast and localized signal selection techniques. J. Microsc.-Oxford 117, 11–23 (1979)CrossRefGoogle Scholar
  186. A. Howie, L.D. Marks, S.J. Pennycook, New imaging methods for catalyst particles. Ultramicroscopy 8, 163–174 (1982)CrossRefGoogle Scholar
  187. A. Howie, M.J. Whelan, Diffraction contrast of electron microscope images of crystal lattice defects. II. The development of a dynamical theory. Proc. Roy. Soc. London A 263, 217–237 (1961)CrossRefGoogle Scholar
  188. A. Howie, M.J. Whelan, Diffraction contrast of electron microscope images of crystal lattice defects. III. Results and experimental confirmation of the dynamical theory of dislocation image contrast. Proc. R. Soc. Lond. A 267, 206–230 (1962)CrossRefGoogle Scholar
  189. C.J. Humphreys, Scattering of fast electrons by crystals. Rep. Prog. Phys. 42, 1825–1887 (1979)CrossRefGoogle Scholar
  190. C.J. Humphreys, P.B. Hirsch, Absorption parameters in electron diffraction theory. Philos. Mag. 18, 115–122 (1968)CrossRefGoogle Scholar
  191. C.J. Humphreys, R. Sandstrom, J.P. Spencer, in Scanning Electron Microscopy/1973 (Part II), ed. by O. Johari (IIT Research Institue, Chicago, IL, 1973), pp. 233–239Google Scholar
  192. C.J. Humphreys, M.J. Whelan, Inelastic scattering of fast electrons by crystals – I. Single electron excitations. Philos. Mag. 20, 165–172 (1969)CrossRefGoogle Scholar
  193. C.R. Hutchinson, X. Fan, S.J. Pennycook, G.J. Shiflet, On the origin of the high coarsening resistance of omega plates in Al-Cu-Mg-Ag alloys. Acta Mater. 49, 2827–2841 (2001)CrossRefGoogle Scholar
  194. J.L. Hutchison, J.M. Titchmarsh, D.J.H. Cockayne, R.C. Doole, C.J.D. Hetherington, A.I. Kirkland, H. Sawada, A versatile double aberration-corrected, energy filtered HREM/STEM for materials science. Ultramicroscopy 103, 7–15 (2005)CrossRefGoogle Scholar
  195. M.J. Hÿtch, W.M. Stobbs, Quantitative comparison of high-resolution TEM images with image simulations. Ultramicroscopy 53, 191–203 (1994)CrossRefGoogle Scholar
  196. J.C. Idrobo, M.P. Oxley, W. Walkosz, R.F. Klie, S. Ogut, B. Mikijelj, S.J. Pennycook, S.T. Pantelides, Identification and lattice location of oxygen impurities in alpha-Si3N4. Appl. Phys. Lett. 95, 164101 (2009)Google Scholar
  197. S. Iijima, Observation of single and clusters of atoms in bright field electron-microscopy. Optik 48, 193–214 (1977)Google Scholar
  198. V. Intaraprasonk, H.L. Xin, D.A. Muller, Analytic derivation of optimal imaging conditions for incoherent imaging in aberration-corrected electron microscopes. Ultramicroscopy 108, 1454–1466 (2008)CrossRefGoogle Scholar
  199. M. Isaacson, D. Johnson, Microanalysis of light-elements using transmitted energy-loss electrons. Ultramicroscopy 1, 33–52 (1975)CrossRefGoogle Scholar
  200. M. Isaacson, D. Johnson, A.V. Crewe, Electron-beam excitation and damage of biological molecules – its implications for specimen damage in electron microscopy. Radiat. Res. 55, 205–224 (1973)CrossRefGoogle Scholar
  201. M. Isaacson, D. Kopf, M. Ohtsuki, M. Utlaut, Atomic imaging using the dark-field annular detector in the STEM. Ultramicroscopy 4, 101–104 (1979)CrossRefGoogle Scholar
  202. M. Isaacson, D. Kopf, M. Utlaut, N.W. Parker, A.V. Crewe, Direct observations of atomic diffusion by scanning-transmission electron-microscopy. Proc. Natl. Acad. Sci. USA. 74, 1802–1806 (1977)CrossRefGoogle Scholar
  203. M. Isaacson, J.P. Langmore, H. Rose, Determination of nonlocalization of inelastic-scattering of electrons by electron-microscopy. Optik 41, 92–96 (1974)Google Scholar
  204. M. Isaacson, M. Scheinfein, A high-performance electron-energy loss spectrometer for use with a dedicated STEM. J. Vac. Sci. Technol. B 1, 1338–1343 (1983)CrossRefGoogle Scholar
  205. K. Ishizuka Prospects of atomic resolution imaging with an aberration-corrected STEM. J. Electron Microsc. 50, 291–305 (2001)CrossRefGoogle Scholar
  206. K. Ishizuka, A practical approach for STEM image simulation based on the FFT multislice method. Ultramicroscopy 90, 71–83 (2002)CrossRefGoogle Scholar
  207. E.M. James, N.D. Browning, Practical aspects of atomic resolution imaging and analysis in STEM. Ultramicroscopy 78, 125–139 (1999)CrossRefGoogle Scholar
  208. E.M. James, N.D. Browning, A.W. Nicholls, M. Kawasaki, Y. Xin, S. Stemmer, Demonstration of atomic resolution Z-contrast imaging by a JEOL JEM-2010F scanning transmission electron microscope. J. Electron Microsc. 47, 561–574 (1998)CrossRefGoogle Scholar
  209. R.W. James, The Optical Principles of the Diffraction of X-Rays (Bell and Sons, London, 1962)Google Scholar
  210. C. Jeanguillaume, P. Trebbia, C. Colliex, About use of electron energy-loss spectroscopy for chemical mapping of thin foils with high spatial-resolution. Ultramicroscopy 3, 237–242 (1978)CrossRefGoogle Scholar
  211. D.E. Jesson, S.J. Pennycook, Incoherent imaging of thin specimens using coherently scattered electrons. Proc. R. Soc. Lond. A 441, 261–281 (1993)CrossRefGoogle Scholar
  212. D.E. Jesson, S.J. Pennycook, Incoherent imaging of crystals using thermally scattered electrons. Proc. R. Soc. Lond. A 449, 273–293 (1995)CrossRefGoogle Scholar
  213. D.E. Jesson, S.J. Pennycook, J.M. Baribeau, Direct imaging of interfacial ordering in ultrathin (SimGen)p superlattices. Phys. Rev. Lett. 66, 750–753 (1991)CrossRefGoogle Scholar
  214. D.E. Jesson, S.J. Pennycook, J.M. Baribeau, D.C. Houghton, Direct imaging of surface cusp evolution during strained-layer epitaxy and implications for strain relaxation. Phys. Rev. Lett. 71, 1744–1747 (1993a)CrossRefGoogle Scholar
  215. D.E. Jesson, S.J. Pennycook, J.Z. Tischler, J.D. Budai, J.M. Baribeau, D.C. Houghton, Interplay between evolving surface-morphology, atomic-scale growth modes, and ordering during SixGe1-X epitaxy. Phys. Rev. Lett. 70, 2293–2296 (1993b)CrossRefGoogle Scholar
  216. C.L. Jia, Atom vacancies at a screw dislocation core in SrTiO3. Philos. Mag. Lett. 86, 683–690 (2006)CrossRefGoogle Scholar
  217. C.L. Jia, M. Lentzen, K. Urban, Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870–873 (2003)CrossRefGoogle Scholar
  218. C.L. Jia, S.B. Mi, M. Faley, U. Poppe, J. Schubert, K. Urban, Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 79, 081405 (2009a)Google Scholar
  219. C.L. Jia, S.B. Mi, K. Urban, I. Vrejoiu, M. Alexe, D. Hesse, Effect of a single dislocation in a heterostructure layer on the local polarization of a ferroelectric layer. Phys. Rev. Lett. 102, 117601 (2009b)Google Scholar
  220. C. Jia, V. Nagarajan, J. He, L. Houben, T. Zhao, R. Ramesh, K. Urban, R. Waser, Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films. Nat. Mat. 6, 64–69 (2006)CrossRefGoogle Scholar
  221. C.L. Jia, A. Thust, K. Urban, Atomic-scale analysis of the oxygen configuration at a SrTiO3 dislocation core. Phys. Rev. Lett. 95, 225506 (2005)Google Scholar
  222. C.L. Jia, K. Urban, Atomic-resolution measurement of oxygen concentration in oxide materials. Science 303, 2001–2004 (2004)CrossRefGoogle Scholar
  223. D.E. Johnson, Electron-energy loss microanalysis system with high collection efficiency. Rev. Sci. Instrum. 51, 705–709 (1980)CrossRefGoogle Scholar
  224. D.C. Joy, D.M. Maher, Choice of operating parameters for microanalysis by electron energy-loss spectroscopy. Ultramicroscopy 3, 69–74 (1978a)CrossRefGoogle Scholar
  225. D.C. Joy, D.M. Maher, Practical electron spectrometer for chemical-analysis. J. Microsc. Oxford 114, 117–129 (1978b)CrossRefGoogle Scholar
  226. B. Kabius, P. Hartel, M. Haider, H. Muller, S. Uhlemann, U. Loebau, J. Zach, H. Rose, First application of Cc-corrected imaging for high-resolution and energy-filtered TEM. J. Electron. Microsc. 58, 147–155 (2009)CrossRefGoogle Scholar
  227. K. Kambe, Visualization of Bloch waves of high-energy electrons in high-resolution electron-microscopy. Ultramicroscopy 10, 223–227 (1982)CrossRefGoogle Scholar
  228. Y. Kamiya, Y. Nakai, Diffraction contrast effect of electrons scattered inelastically through large angles. J. Phys. Soc. Jpn. 31, 195–203 (1971)CrossRefGoogle Scholar
  229. Y. Kamiya, R. Uyeda, Effect of incoherent waves on the electron microscopic images of crystals. J. Phys. Soc. Jpn. 16, 1361–1366 (1961)CrossRefGoogle Scholar
  230. O.H. Kapp, M.G. Mainwaring, S.N. Vinogradov, A.V. Crewe, Scanning-transmission electron-microscopic examination of the hexagonal bilayer structures formed by the reassociation of 3 of the 4 subunits of the extracellular hemoglobin of lumbricus-terrestris. Proc. Natl. Acad. Sci. U.S.A. 84, 7532–7536 (1987)CrossRefGoogle Scholar
  231. C.S. Kim, M. Kim, J.K. Furdyna, M. Dobrowolska, S. Lee, H. Rho, L.M. Smith, H.E. Jackson, E.M. James, Y. Xin, Evidence for 2D precursors and interdiffusion in the evolution of self-assembled CdSe quantum dots on ZnSe. Phys. Rev. Lett. 85, 1124–1127 (2000)CrossRefGoogle Scholar
  232. K. Kimoto, T. Asaka, T. Nagai, M. Saito, Y. Matsui, K. Ishizuka, Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450, 702–704 (2007)CrossRefGoogle Scholar
  233. K. Kimoto, R. Xie, Y. Matsui, K. Ishizuka, N. Hirosaki, Direct observation of single dopant atom in light-emitting phosphor of β-SiAlON: Eu. Appl. Phys. Lett. 94, 041908 (2009)Google Scholar
  234. E.J. Kirkland, R.F. Loane, J. Silcox, Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy 23, 77–96 (1987)CrossRefGoogle Scholar
  235. C. Kisielowski, B. Freitag, M. Bischoff, van H. Lin, S. Lazar, G. Knippels, P. Tiemeijer, M. van der Stam, S. von Harrach, M. Stekelenburg, M. Haider, S. Uhlemann, H. Muller, P. Hartel, B. Kabius, D. Miller, I. Petrov, E.A. Olson, T. Donchev, E.A. Kenik, A.R. Lupini, J. Bentley, S.J. Pennycook, I.M. Anderson, A.M. Minor, A.K. Schmid, T. Duden, V. Radmilovic, Q.M. Ramasse, M. Watanabe, R. Erni, E.A. Stach, P. Denes, U. Dahmen, Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-angstrom information limit. Microsc. Microanal. 14, 469–477 (2008)Google Scholar
  236. R.F. Klie, N.D. Browning, Atomic scale characterization of oxygen vacancy segregation at SrTiO3 grain boundaries. Appl. Phys. Lett. 77, 3737–3739 (2000)CrossRefGoogle Scholar
  237. M. Knoll, Aufladepotentiel und Sekundäremission elektronenbestrahlter Körper. Z. Tech. Phys. 16, 467–475 (1935)Google Scholar
  238. M. Knoll, E. Ruska, Das Elektronenmikroskop. Z. Phys. A. 78, 318–339 (1932)Google Scholar
  239. H. Kohl, Image formation by inelastically scattered electrons: Image of a surface plasmon. Ultramicroscopy 11, 53–65 (1983)CrossRefGoogle Scholar
  240. H. Kohl, H. Rose, Theory of image-formation by inelastically scattered electrons in the electron-microscope. Adv. Imag. Electron. Phys. 65, 173–227 (1985)CrossRefGoogle Scholar
  241. T. Koller, M. Beer, M. Muller, K. Muhletha, Electron-microscopy of selectively stained molecules. Cytobiologie 4, 369–408 (1971)Google Scholar
  242. T.J. Konno, E. Okunishi, T. Ohsuna, K. Hiraga, HAADF-STEM study on the early stage of precipitation in aged Al-Ag alloys. J. Electron. Microsc. 53, 611–616 (2004)CrossRefGoogle Scholar
  243. O.L. Krivanek, C.C. Ahn, R.B. Keeney, Parallel detection electron spectrometer using quadrupole lenses. Ultramicroscopy 22, 103–115 (1987)CrossRefGoogle Scholar
  244. O.L. Krivanek, N. Dellby, A.J. Spence, R.A. Camps, L.M. Brown, in: Institute of Physics Conference Series No. 153, ed. by J.M. Rodenburg (1997), pp. 35–40Google Scholar
  245. O.L. Krivanek, N. Dellby, A.R. Lupini, Towards sub-Å electron beams. Ultramicroscopy 78, 1–11 (1999)CrossRefGoogle Scholar
  246. O.L. Krivanek, N. Dellby, M.F. Murfitt, in Handbook of Charged Particle Optics, 2nd edn. ed. by J. Orloff (CRC Press, Boca Raton, 2009a), pp. 601–640Google Scholar
  247. O.L. Krivanek, M.M. Disko, J. Taftø, J.C.H. Spence, Electron energy loss spectroscopy as a probe of the local atomic environment. Ultramicroscopy 9, 249–254 (1982)CrossRefGoogle Scholar
  248. O.L. Krivanek, P.D. Nellist, N. Dellby, M.F. Murfitt, Z.S. Szilagyi, Towards sub-0.5 Å electron beams. Ultramicroscopy 96, 229–237 (2003)CrossRefGoogle Scholar
  249. O.L. Krivanek, J.P. Ursin, N.J. Bacon, G.J. Corbin, N. Dellby, P. Hrncirik, M.F. Murfitt, C.S. Own, Z.S. Szilagyi High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy. Philos. Trans. R. Soc. A 367, 3683–3697 (2009b)CrossRefGoogle Scholar
  250. O.L. Krivanek, M.F. Chisholm, V. Nicolosi, T.J. Pennycook, G.J. Corbin, N. Dellby, M.F. Murfitt, C.S. Own, Z.S. Szilagyi, M.P. Oxley, S.T. Pantelides, S.J. Pennycook, Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571–574 (2010)CrossRefGoogle Scholar
  251. H. Lakner, B. Bollig, E. Kubalek, M. Heuken, K. Heime, F. Scheffer, F.E.G. Guimaraes, Scanning-transmission electron-microscopy of heterointerfaces grown by metalorganic vapor-phase epitaxy (MOVPE). J. Cryst. Growth 107, 452–457 (1991)CrossRefGoogle Scholar
  252. H. Lakner, B. Bollig, S. Ungerechts, E. Kubalek, Characterization of III–V semiconductor interfaces by Z-contrast imaging, EELS and CBED. J. Phys. D. 29, 1767–1778 (1996)CrossRefGoogle Scholar
  253. H. Lakner, B. Rafferty, G. Brockt, Electronic structure analysis of (In,Ga,Al)n heterostructures on the nanometre scale using EELS. J. Microsc.-Oxford 194, 79–83 (1999)CrossRefGoogle Scholar
  254. J.P. Langmore, J. Wall, M.S. Isaacson, Collection of scattered electrons in dark field electron-microscopy. 1. Elastic-scattering. Optik 38, 335–350 (1973)Google Scholar
  255. R.D. Leapman, V.E. Cosslett, Extended fine-structure above x-ray edge in electron-energy loss spectra. J. Phys. D. 9, L29–L32 (1976)CrossRefGoogle Scholar
  256. J.M. LeBeau, A.J. D’Alfonso, S.D. Findlay, S. Stemmer, L.J. Allen, Quantitative comparisons of contrast in experimental and simulated bright-field scanning transmission electron microscopy images. Phys. Rev. B 80, 214110 (2009a)Google Scholar
  257. J.M. LeBeau, S.D. Findlay, L.J. Allen, S. Stemmer, Quantitative atomic resolution scanning transmission electron microscopy. Phys. Rev. Lett.100, 206101 (2008)Google Scholar
  258. J.M. LeBeau, S.D. Findlay, X.Q. Wang, A.J. Jacobson, L.J. Allen, S. Stemmer, High-angle scattering of fast electrons from crystals containing heavy elements: Simulation and experiment. Phys. Rev. B 79, 214110 (2009b)Google Scholar
  259. J.M. LeBeau, S. Stemmer, Experimental quantification of annular dark-field images in scanning transmission electron microscopy. Ultramicroscopy 108, 1653–1658 (2008)CrossRefGoogle Scholar
  260. J.A. Lin, J.M. Cowley, Calibration of the operating parameters for an HB5 STEM instrument. Ultramicroscopy 19, 31–42 (1986a)CrossRefGoogle Scholar
  261. J.A. Lin, J.M. Cowley, Reconstruction from in-line electron holograms by digital processing. Ultramicroscopy 19, 179–190 (1986b)CrossRefGoogle Scholar
  262. C.P. Liu, A.R. Preston, C.B. Boothroyd, C.J. Humphreys, Quantitative analysis of ultrathin doping layers in semiconductors using high-angle annular dark field images. J. Microsc. Oxford 194, 171–182 (1999)CrossRefGoogle Scholar
  263. J. Liu, Y. Cheng, J.M. Cowley, M.B. Stearns, High-angle annular dark-field microscopy of Mo/Si multilayer structures. Ultramicroscopy 40, 352–364 (1992)CrossRefGoogle Scholar
  264. J. Liu, J.M. Cowley, High-angle ADF and high-resolution SE imaging of supported catalyst clusters. Ultramicroscopy 34, 119–128 (1990)CrossRefGoogle Scholar
  265. J. Liu, J.M. Cowley, Imaging with high-angle scattered electrons and secondary electrons in the STEM. Ultramicroscopy 37, 50–71 (1991)CrossRefGoogle Scholar
  266. J. Liu, J.M. Cowley, High-resolution scanning-transmission electron-microscopy. Ultramicroscopy 52, 335–346 (1993)CrossRefGoogle Scholar
  267. R.F. Loane, E.J. Kirkland, J. Silcox, Visibility of single heavy-atoms on thin crystalline silicon in simulated annular dark-field STEM images. Acta Cryst. A 44, 912–927 (1988)CrossRefGoogle Scholar
  268. R.F. Loane, P. Xu, J. Silcox, Incoherent imaging of zone axis crystals with ADF STEM. Ultramicroscopy 40, 121–138 (1992)CrossRefGoogle Scholar
  269. R.F. Loane, P. Xu, J. Silcox, Thermal vibrations in convergent-beam electron-diffraction. Acta Cryst. A 47, 267–278 (1991)CrossRefGoogle Scholar
  270. A.R. Lupini, A.Y. Borisevich, J.C. Idrobo, H.M. Christen, M. Biegalski, S.J. Pennycook, Characterizing the two- and three-dimensional resolution of an improved aberration-corrected STEM. Microsc. Microanal. 15, 441–453 (2009)CrossRefGoogle Scholar
  271. A.R. Lupini, S.J. Pennycook, Localization in elastic and inelastic scattering. Ultramicroscopy 96, 313–322 (2003)CrossRefGoogle Scholar
  272. M. Luysberg, M. Heidelmann, L. Houben, M. Boese, T. Heeg, J. Schubert, M. Roeckerath, Intermixing and charge neutrality at DyScO3/SrTiO3 interfaces. Acta Mater. 57, 3192–3198 (2009)CrossRefGoogle Scholar
  273. A. Maiti, M.F. Chisholm, S.J. Pennycook, S.T. Pantelides, Dopant segregation at semiconductor grain boundaries through cooperative chemical rebonding. Phys. Rev. Lett. 77, 1306–1309 (1996)CrossRefGoogle Scholar
  274. L. Marton, Electron microscopy. Rep. Prog. Phys. 10, 204–252 (1944)CrossRefGoogle Scholar
  275. I.A. Mastrangelo, P.V.C. Hough, Van G. Wilson, J.S. Wall, J.F. Hainfeeld, P. Tegtmeyer, Monomers through trimers of large tumor antigen bind in region I and monomers through tetramers bind in region II of simian virus 40 origin of replication DNA as stable structures in solution. Proc. Natl. Acad. Sci. USA. 82, 3626–3630 (1985)CrossRefGoogle Scholar
  276. J. McBride, J. Treadway, L.C. Feldman, S.J. Pennycook, S.J. Rosenthal, Structural basis for near unity quantum yield core/shell nanostructures. Nano Lett. 6, 1496–1501 (2006)CrossRefGoogle Scholar
  277. J.R. McBride, T.C. Kippeny, S.J. Pennycook, S.J. Rosenthal, Aberration-corrected Z-contrast scanning transmission electron microscopy of CdSe nanocrystals. Nano Lett. 4, 1279–1283 (2004)CrossRefGoogle Scholar
  278. A.J. McGibbon, S.J. Pennycook, J.E. Angelo, Direct observation of dislocation core structures in CdTe/GaAs(001). Science 269, 519–521 (1995)CrossRefGoogle Scholar
  279. A.J. McGibbon, S.J. Pennycook, D.E. Jesson, Crystal structure retrieval by maximum entropy analysis of atomic resolution incoherent images. J. Microsc.-Oxford 195, 44–57 (1999)CrossRefGoogle Scholar
  280. M.M. McGibbon, N.D. Browning, M.F. Chisholm, A.J. McGibbon, S.J. Pennycook, V. Ravikumar, V.P. Dravid, Direct determination of grain-boundary atomic-structure in SrTiO3. Science 266, 102–104 (1994)CrossRefGoogle Scholar
  281. M.M. McGibbon, N.D. Browning, A.J. McGibbon, S.J. Pennycook, The atomic structure of asymmetric [001] tilt boundaries in SrTiO3. Philos. Mag. A 73, 625–641 (1996)CrossRefGoogle Scholar
  282. R.A. McKee, F.J. Walker, M.F. Chisholm, Crystalline oxides on silicon: The first five monolayers. Phys. Rev. Lett. 81, 3014–3017 (1998)CrossRefGoogle Scholar
  283. R.A. McKee, F.J. Walker, M.F. Chisholm, Physical structure and inversion charge at a semiconductor interface with a crystalline oxide. Science 293, 468–471 (2001)CrossRefGoogle Scholar
  284. D. McMullan, SEM past, present and future. J. Microsc.-Oxford 155, 373–392 (1989)CrossRefGoogle Scholar
  285. D. McMullan, Scanning electron-microscopy 1928–1965. Scanning 17, 175–185 (1995)CrossRefGoogle Scholar
  286. D. McMullan, A history of the scanning electron microscope, 1928–1965. Adv. Imag. Elect. Phys. 133, 523–545 (2004)CrossRefGoogle Scholar
  287. D. McMullan, J.M. Rodenburg, Y. Murooka, A.J. McGibbon, Parallel EELS CCD detector for a VG HB501 STEM. Inst. Phys. Conf. Ser. No. 98, 55–58 (1990)Google Scholar
  288. A. Melander, R. Sandstrom, Stacking-fault contrast from phonon-scattered electrons. J. Phys. C. 8, 767–779 (1975)CrossRefGoogle Scholar
  289. L.D. Menard, S.P. Gao, H.P. Xu, R.D. Twesten, A.S. Harper, Y. Song, G.L. Wang, A.D. Douglas, J.C. Yang, A.I. Frenkel, R.G. Nuzzo, R.W. Murray, Sub-nanometer Au monolayer-protected clusters exhibiting molecule-like electronic behavior: Quantitative high-angle annular dark-field scanning transmission electron microscopy and electrochemical characterization of clusters with precise atomic stoichiometry. J. Phys. Chem. B 110, 12874–12883 (2006)CrossRefGoogle Scholar
  290. J. Menter, The direct study by electron microscopy of crystal lattices and their imperfections. Proc. R. Soc. Lond. A 236, 119–135 (1956)Google Scholar
  291. J.R. Michael, D.B. Williams, A consistent definition of probe size and spatial-resolution in the analytical electron-microscope. J. Microsc.-Oxford 147, 289–303 (1987)CrossRefGoogle Scholar
  292. P.A. Midgley, J.M. Thomas, L. Laffont, M. Weyland, R. Raja, B.F.G. Johnson, T. Khimyak, High-resolution scanning transmission electron tomography and elemental analysis of zeptogram quantities of heterogeneous catalyst. J. Phys. Chem. B 108, 4590–4592 (2004)CrossRefGoogle Scholar
  293. P.A. Midgley, M. Weyland, 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413 (2003)CrossRefGoogle Scholar
  294. P.A. Midgley, M. Weyland, J.M. Thomas, B.F.G. Johnson, Z-contrast tomography: A technique in three-dimensional nanostructural analysis based on Rutherford scattering. Chem. Commun. 10, 907–908 (2001)Google Scholar
  295. D.L. Misell, G.W. Stroke, M. Halioua, Coherent and incoherent imaging in scanning-transmission electron-microscope. J. Phys. D. 7, L113–L117 (1974)CrossRefGoogle Scholar
  296. K. Mitsuishi, M. Kawasaki, M. Takeguchi, K. Furuya, Determination of atomic positions in a solid Xe precipitate embedded in an Al matrix. Phys. Rev. Lett. 82, 3082–3084 (1999)CrossRefGoogle Scholar
  297. K. Mitsuishi, M. Takeguchi, H. Yasuda, K. Furuya, New scheme for calculation of annular dark-field STEM image including both elastically diffracted and TDS waves. J. Electron Microsc. 50, 157–162 (2001)CrossRefGoogle Scholar
  298. K.A. Mkhoyan, E.J. Kirkland, J. Silcox, E.S. Alldredge, Atomic level scanning transmission electron microscopy characterization of GaN/AlN quantum wells. J. Appl. Phys. 96, 738–746 (2004)CrossRefGoogle Scholar
  299. K.A. Mkhoyan, J. Silcox, H. Wu, W.J. Schaff, L.F. Eastman, Nonuniformities in GaN/AlN quantum wells. Appl. Phys. Lett. 83, 2668–2670 (2003)CrossRefGoogle Scholar
  300. S.I. Molina, T. Ben, D.L. Sales, J. Pizarro, P.L. Galindo, M. Varela, S.J. Pennycook, D. Fuster, Y. Gonzalez, L. Gonzalez, Determination of the strain generated in InAs/InP quantum wires: Prediction of nucleation sites. Nanotechnology 17, 5652–5658 (2006)CrossRefGoogle Scholar
  301. S.I. Molina, A.M. Sanchez, A.M. Beltran, D.L. Sales, T. Ben, M.F. Chisholm, M. Varela, S.J. Pennycook, P.L. Galindo, A.J. Papworth, P.J. Goodhew, and J.M. Ripalda, Incorporation of Sb in InAs/GaAs quantum dots. Appl. Phys. Lett. 91, 263105 (2007a)CrossRefGoogle Scholar
  302. S.I. Molina, D.L. Sales, P.L. Galindo, D. Fuster, Y. Gonzalez, B. Alen, L. Gonzalez, M. Varela, S.J. Pennycook, Column-by-column compositional mapping by Z-contrast imaging. Ultramicroscopy 109, 172–176 (2009)CrossRefGoogle Scholar
  303. S.I. Molina, M. Varela, T. Ben, D.L. Sales, J. Pizarro, P.L. Galindo, D. Fuster, Y. Gonzalez, L. Gonzalez, S.J. Pennycook, A method to determine the strain and nucleation sites of stacked nano-objects. J. Nanosci. Nanotech. 8, 3422–3426 (2008)CrossRefGoogle Scholar
  304. S.I. Molina, M. Varela, D.L. Sales, T. Ben, J. Pizarro, P.L. Galindo, D. Fuster, Y. Gonzalez, L. Gonzalez, S.J. Pennycook, Direct imaging of quantum wires nucleated at diatomic steps. Appl. Phys. Lett. 91, 143112 (2007b)Google Scholar
  305. K.T. Moore, J.M. Howe, D.C. Elbert, Analysis of diffraction contrast as a function of energy loss in energy-filtered transmission electron microscope imaging. Ultramicroscopy 80, 203–219 (1999)CrossRefGoogle Scholar
  306. C. Mory, C. Colliex, B. Revet, E. Delain, Improved visualization of single-stranded and double-stranded nucleic-acids by STEM. Ultramicroscopy 7, 161–168 (1981)CrossRefGoogle Scholar
  307. C. Mory, H. Kohl, M. Tence, C. Colliex, Experimental investigation of the ultimate EELS spatial-resolution. Ultramicroscopy 37, 191–201 (1991)CrossRefGoogle Scholar
  308. E.N. Moudrianakis, M. Beer, Base sequence determination in nucleic acids with the electron microscope. III. Chemistry and microscopy of guanine-labeled DNA. Proc. Natl. Acad. Sci. USA. 53, 564–571 (1965)CrossRefGoogle Scholar
  309. H. Mullejans, J. Bruley, Improvements in detection sensitivity by spatial difference electron-energy-loss spectroscopy at interfaces in ceramics. Ultramicroscopy 53, 351–360 (1994)CrossRefGoogle Scholar
  310. H. Mullejans, J. Bruley, Electron-energy-loss near-edge structure of internal interfaces by spatial difference spectroscopy. J. Microsc. Oxford 180, 12–21 (1995)CrossRefGoogle Scholar
  311. D.A. Muller, Why changes in bond lengths and cohesion lead to core-level shifts in metals, and consequences for the spatial difference method. Ultramicroscopy 78, 163–174 (1999)CrossRefGoogle Scholar
  312. D.A. Muller, M.J. Mills, Electron microscopy: Probing the atomic structure and chemistry of grain boundaries, interfaces and defects. Mater. Sci. Eng. A 260, 12–28 (1999)CrossRefGoogle Scholar
  313. D.A. Muller, G. Wilk, Atomic scale measurements of the interfacial electronic structure and chemistry of zirconium silicate gate dielectrics. Appl. Phys. Lett. 79, 4195 (2001)CrossRefGoogle Scholar
  314. D.A. Muller, in Characterization and Metrology for ULSI Technology: 2000 International Conference, ed. by D.G. Seller, A.C. Diebold, T.J. Shaffner, R. Mcdonald, W.M. Bullis, P.J. Smith, E.M. Secula (American Institute of Physics, Melville, NY, 2001), pp. 500–505Google Scholar
  315. D.A. Muller, B. Edwards, E.J. Kirkland, J. Silcox, Simulation of thermal diffuse scattering including a detailed phonon dispersion curve. Ultramicroscopy 86, 371–380 (2001)CrossRefGoogle Scholar
  316. D.A. Muller, J. Grazul, Optimizing the environment for sub-0.2 nm scanning transmission electron microscopy. J. Electron Microsc. 50, 219–226 (2001)CrossRefGoogle Scholar
  317. D.A. Muller, L.F. Kourkoutis, M. Murfitt, J.H. Song, H.Y. Hwang, J. Silcox, N. Dellby, O.L. Krivanek, Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008)CrossRefGoogle Scholar
  318. D.A. Muller, D.A. Shashkov, R. Benedek, L.H. Yang, J. Silcox, D.N. Seidman, Atomic scale observations of metal-induced gap states at {222}MgO/Cu interfaces. Phys. Rev. Lett. 80, 4741–4744 (1998)CrossRefGoogle Scholar
  319. D.A. Muller, J. Silcox, Delocalization in inelastic scattering. Ultramicroscopy 59, 195–213 (1995)CrossRefGoogle Scholar
  320. D.A. Muller, T. Sorsch, S. Moccio, F.H. Baumann, K. Evans-Lutterodt, G. Timp, The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758–761 (1999)CrossRefGoogle Scholar
  321. D.A. Muller, S. Subramanian, P.E. Batson, S.L. Sass, J. Silcox, Near atomic scale studies of electronic structure at grain boundaries in Ni3Al. Phys. Rev. Lett. 75, 4744–4747 (1995)CrossRefGoogle Scholar
  322. D.A. Muller, S. Subramanian, P.E. Batson, J. Silcox, S.L. Sass, Structure, chemistry and bonding at grain boundaries in Ni3Al-1. The role of boron in ductilizing grain boundaries. Acta Mater. 44, 1637–1645 (1996)CrossRefGoogle Scholar
  323. D.A. Muller, Y. Tzou, R. Raj, J. Silcox, Mapping sp(2) and sp(3) states of carbon at subnanometer spatial-resolution. Nature 366, 725–727 (1993)CrossRefGoogle Scholar
  324. E.W. Müller, Die Abhängigkeit der Feldelektronenemission von der Austrittsarbeit. Z. Phys. A. 102, 734–761 (1936)Google Scholar
  325. F. Müller, in Scientific Research in World War II. What Scientists did in the War, ed. by A. Mass, H. Hooijmaijers (Routledge, Abingdon and New York, 2009), pp. 121–146Google Scholar
  326. S. Müller, A. Engel, Structure and mass analysis by scanning transmission electron microscopy. Micron 32, 21–31 (2001)CrossRefGoogle Scholar
  327. H. Müller, S. Uhlemann, P. Hartel, M. Haider, Advancing the hexapole Cs-corrector for the scanning transmission electron microscope. Microsc. Microanal. 12, 442–455 (2006)CrossRefGoogle Scholar
  328. S. Müller, K. Goldie, R. Bürki, R. Häring, A. Engel, Factors influencing the precision of quantitative scanning transmission electron microscopy. Ultramicroscopy 46, 317–334 (1992)CrossRefGoogle Scholar
  329. K. Nakamura, H. KaKibayashi, K. Kanehori, N. Tanaka, Position dependence of the visibility of a single gold atom in silicon crystals in HAADF-STEM image simulation. J. Electron. Microsc. 46, 33–43 (1997)CrossRefGoogle Scholar
  330. P.D. Nellist, G. Behan, A.I. Kirkland, C.J.D. Hetherington, Confocal operation of a transmission electron microscope with two aberration correctors. Appl. Phys. Lett. 89, 124105 (2006)Google Scholar
  331. P.D. Nellist, M.F. Chisholm, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z.S. Szilagyi, A.R. Lupini, A. Borisevich, W.H. Sides, S.J. Pennycook, Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741–1741 (2004)CrossRefGoogle Scholar
  332. P.D. Nellist, E.C. Cosgriff, G. Behan, A.I. Kirkland, Imaging modes for scanning confocal electron microscopy in a double aberration-corrected transmission electron microscope. Microsc. Microanal. 14, 82–88 (2008)Google Scholar
  333. P.D. Nellist, S.J. Pennycook, Direct imaging of the atomic configuration of ultradispersed catalysts. Science 274, 413–415 (1996)CrossRefGoogle Scholar
  334. P.D. Nellist, S.J. Pennycook, Accurate structure determination from image reconstruction in ADF STEM. J. Microsc. Oxford 190, 159–170 (1998a)CrossRefGoogle Scholar
  335. P.D. Nellist, S.J. Pennycook, Subangstrom resolution by underfocused incoherent transmission electron microscopy. Phys. Rev. Lett. 81, 4156–4159 (1998b)CrossRefGoogle Scholar
  336. P.D. Nellist, S.J. Pennycook, Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78, 111–124 (1999)CrossRefGoogle Scholar
  337. D.P. Norton, D.H. Lowndes, S.J. Pennycook, J.D. Budai, Depression and broadening of the superconducting transition in superlattices based on YBa2Cu3O7-δ – influence of the barrier layers. Phys. Rev. Lett. 67, 1358–1361 (1991)CrossRefGoogle Scholar
  338. S.H. Oh, K. van Benthem, S.I. Molina, A.Y. Borisevich, W.D. Luo, P. Werner, N.D. Zakharov, D. Kumar, S.T. Pantelides, S.J. Pennycook, Point defect configurations of supersaturated Au atoms inside Si nanowires. Nano Lett. 8, 1016–1019 (2008)CrossRefGoogle Scholar
  339. A. Ohtomo, D.A. Muller, J.L. Grazul, H.Y. Hwang, Epitaxial growth and electronic structure of LaTiOx films. Appl. Phys. Lett. 80, 3922–3924 (2002a)CrossRefGoogle Scholar
  340. A. Ohtomo, D.A. Muller, J.L. Grazul, H.Y. Hwang, Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature 419, 378–380 (2002b)CrossRefGoogle Scholar
  341. M. Ohtsuki, M.S. Isaacson, A.V. Crewe, Dark field imaging of biological macromolecules with the scanning-transmission electron-microscope. Proc. Natl. Acad. Sci. USA. 76, 1228–1232 (1979)CrossRefGoogle Scholar
  342. E. Okunishi, I. Ishikawa, H. Sawada, F. Hosokawa, M. Hori, Y. Kondo, Visualization of light elements at ultrahigh resolution by STEM annular bright field microscopy. Microsc. Microanal. 15, 164–165 (2009)CrossRefGoogle Scholar
  343. M.T. Otten, High-angle annular dark-field imaging on a TEM/STEM system. J. Electron Microsc. Tech. 17, 221–230 (1991)CrossRefGoogle Scholar
  344. F.P. Ottensmeyer, Scattered electrons in microscopy and microanalysis. Science 215, 461–466 (1982)CrossRefGoogle Scholar
  345. F.P. Ottensmeyer, D.P. Bazettjones, R.M. Henkelman, A.P. Korn, R.F. Whiting, Imaging of atoms – its application to the structure determination of biological macromolecules. Chemica Scripta 14, 257–262 (1979)Google Scholar
  346. F.P. Ottensmeyer, E.E. Schmidt, A.J. Olbrecht, Image of a sulfur atom. Science 179, 175–176 (1973)CrossRefGoogle Scholar
  347. A. Ourmazd, F.H. Baumann, M. Bode, Y. Kim, Quantitative chemical lattice imaging – theory and practice. Ultramicroscopy 34, 237–255 (1990)CrossRefGoogle Scholar
  348. A. Ourmazd, D.W. Taylor, J. Cunningham, Chemical mapping of semiconductor interfaces at near-atomic resolution. Phys. Rev. Lett. 62, 933–936 (1989)CrossRefGoogle Scholar
  349. M.P. Oxley, L.J. Allen, Delocalization of the effective interaction for inner-shell ionization in crystals. Phys. Rev. B 57, 3273–3282 (1998)CrossRefGoogle Scholar
  350. M.P. Oxley, L.J. Allen, Impact parameters for ionization by high-energy electrons. Ultramicroscopy 80, 125–131 (1999)CrossRefGoogle Scholar
  351. M.P. Oxley, L.J. Allen, C.J. Rossouw, Correction terms and approximations for atom location by channelling enhanced microanalysis. Ultramicroscopy 80, 109–124 (1999)CrossRefGoogle Scholar
  352. M.P. Oxley, S.J. Pennycook, Image simulation for electron energy loss spectroscopy. Micron. 39, 676 (2008)Google Scholar
  353. M.P. Oxley, M. Varela, T.J. Pennycook, K. van Benthem, S.D. Findlay, A.J. D’Alfonso, L.J. Allen, S.J. Pennycook, Interpreting atomic-resolution spectroscopic images. Phys. Rev. B. 76, 064303 (2007)Google Scholar
  354. K. Ozasa, Y. Aoyagi, M. Iwaki, H. Kurata, Facets, indium distribution, and lattice distortion of InGaAs/GaAs quantum dots observed by three-dimensional scanning transmission electron microscope. J. Appl. Phys. 94, 313–317 (2003)CrossRefGoogle Scholar
  355. A. Parisini, V. Morandi, S. Solmi, P.G. Merli, D. Giubertoni, M. Bersani, J.A. van den Berg, Quantitative determination of the dopant distribution in Si ultrashallow junctions by tilted sample annular dark field scanning transmission electron microscopy. Appl. Phys. Lett. 92, 261907 (2008)Google Scholar
  356. J.R. Parsons, H.M. Johnson, C.W. Hoelke, R.R. Hosbons, Imaging of uranium atoms with the electron microscope by phase contrast. Philos. Mag. 27, 1359–1368 (1973)CrossRefGoogle Scholar
  357. Y. Peng, M.P. Oxley, A.R. Lupini, M.F. Chisholm, S.J. Pennycook, Spatial resolution and information transfer in scanning transmission electron microscopy. Microsc. Microanal. 14, 36–47 (2008)Google Scholar
  358. Y.P. Peng, P.D. Nellist, S.J. Pennycook, HAADF-STEM imaging with sub-angstrom probes: A full Bloch wave analysis. J. Electron Microsc. 53, 257–266 (2004)CrossRefGoogle Scholar
  359. S.J. Pennycook, Study of supported ruthenium catalysts by STEM. J. Microsc.-Oxford 124, 15–22 (1981)CrossRefGoogle Scholar
  360. S.J. Pennycook, Delocalization corrections for electron channeling analysis. Ultramicroscopy 26, 239–248 (1988)CrossRefGoogle Scholar
  361. S.J. Pennycook, High-resolution imaging with large-angle elastically scattered electrons. EMSA Bull. 19, 67–74 (1989a)Google Scholar
  362. S.J. Pennycook, Z-contrast STEM for materials science. Ultramicroscopy 30, 58–69 (1989b)CrossRefGoogle Scholar
  363. S.J. Pennycook, in Advances in Imaging and Electron Physics, vol. 123, ed. by P.G. Merli, G. Calestani, M. Vittori-Antisari, (Academic, San Diego, 2002), pp. 173–206Google Scholar
  364. S.J. Pennycook, in Encyclopedia of Condensed Matter Physics, ed. by F. Bassani, J. Liedl, P. Wyder, (Elsevier Science, Kidlington, Oxford, 2006), pp. 240–247Google Scholar
  365. S.J. Pennycook, Investigating the optical properties of dislocations by scanning transmission electron microscopy. Scanning 30, 287–298 (2008)CrossRefGoogle Scholar
  366. S.J. Pennycook, S.D. Berger, R.J. Culbertson, Elemental mapping with elastically scattered electrons. J. Microsc. Oxford 144, 229–249 (1986)CrossRefGoogle Scholar
  367. S.J. Pennycook, L.A. Boatner, Chemically sensitive structure-imaging with a scanning-transmission electron-microscope. Nature 336, 565–567 (1988)CrossRefGoogle Scholar
  368. S.J. Pennycook, L.M. Brown, A.J. Craven, Observation of cathodoluminescence at single dislocations by STEM. Philos. Mag. A 41, 589–600 (1980)CrossRefGoogle Scholar
  369. S.J. Pennycook, N.D. Browning, D.E. Jesson, M.F. Chisholm, A.J. McGibbon, Atomic-resolution imaging and spectroscopy of semiconductor interfaces. Appl. Phys. A 57, 385–391 (1993)CrossRefGoogle Scholar
  370. S.J. Pennycook, N.D. Browning, M.M. McGibbon, A.J. McGibbon, D.E. Jesson, M.F. Chisholm, Direct determination of interface structure and bonding with the scanning transmission electron microscope. Philos. Trans. R. Soc. A. 354, 2619–2634 (1996)CrossRefGoogle Scholar
  371. S.J. Pennycook, M.F. Chisholm, D.E. Jesson, R. Feenstra, S. Zhu, X.Y. Zheng, D.J. Lowndes, Growth and relaxation mechanisms of YBa2Cu3O7-x films. Physica C 202, 1–11 (1992)CrossRefGoogle Scholar
  372. S.J. Pennycook, M.F. Chisholm, D.E. Jesson, D.P. Norton, D.H. Lowndes, R. Feenstra, H.R. Kerchner, J.O. Thomson, Interdiffusion, growth mechanisms, and critical currents in YBa2Cu3O7-x/PrBa2Cu3O7-x superlattices. Phys. Rev. Lett. 67, 765–768 (1991)CrossRefGoogle Scholar
  373. S.J. Pennycook, M.F. Chisholm, A.R. Lupini, M. Varela, van K. Benthem, A.Y. Borisevich, M.P. Oxley, W. Luo, S.T. Pantelides, in Aberration-Corrected Electron Microscopy, ed. by P.W. Hawkes (Academic, Oxford, 2008), pp. 327–384Google Scholar
  374. S.J. Pennycook, M.F. Chisholm, A.R. Lupini, M. Varela, A.Y. Borisevich, M.P. Oxley, W.D. Luo, van K. Benthem, S.H. Oh, D.L. Sales, S.I. Molina, J. Garcia-Barriocanal, C. Leon, J. Santamaria, S.N. Rashkeev, S.T. Pantelides, Aberration-corrected scanning transmission electron microscopy: From atomic imaging and analysis to solving energy problems. Philos. Trans. R. Soc. A. 367, 3709–3733 (2009b)CrossRefGoogle Scholar
  375. S.J. Pennycook, M.F. Chisholm, M. Varela, A.R. Lupini, A. Borisevich, Y. Peng, van K. Benthem, N. Shibata, V.P. Dravid, P. Prabhumirashi, S.D. Findlay, M.P. Oxley, L.J. Allen, N. Dellby, P.D. Nellist, Z.S. Szilagyi, O.L. Krivanek, Materials applications of aberration-corrected STEM, 2004 Focused Interest Group Pre-Congress Meeting “Materials Research in an Aberration Free Environment” (2004a)Google Scholar
  376. S.J. Pennycook, A. Howie, Study of single-electron excitations by electron-microscopy. 2. Cathodoluminescence image-contrast from localized energy transfers. Philos. Mag. A 41, 809–827 (1980)CrossRefGoogle Scholar
  377. S.J. Pennycook, D.E. Jesson, High-resolution incoherent imaging of crystals. Phys. Rev. Lett. 64, 938–941 (1990)CrossRefGoogle Scholar
  378. S.J. Pennycook, D.E. Jesson, High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 14–38 (1991)CrossRefGoogle Scholar
  379. S.J. Pennycook, D.E. Jesson, Atomic resolution Z-contrast imaging of interfaces. Acta Metall. Mater. 40, S149–S159 (1992)CrossRefGoogle Scholar
  380. S.J. Pennycook, D.E. Jesson, M.F. Chisholm, in Microscopy of Semiconducting Materials 1989, ed. by A.G. Cullis, J.L. Hutchison, Institute of Physics Conference Series No. 100, (1989), pp. 51–58Google Scholar
  381. S.J. Pennycook, D.E. Jesson, M.F. Chisholm, in High Resolution Electron Microscopy of Defects in Materials, ed. by R. Sinclair, D.J. Smith, U. Dahmen (Materials Research Society, Warrendale, PA, 1990), pp. 211–222Google Scholar
  382. S.J. Pennycook, A.R. Lupini, A. Borisevich, Y. Peng, N. Shibata, 3D atomic resolution imaging through aberration-corrected STEM. Microsc. Microanal. 10(Suppl. 2), 1172–1173 (2004b)Google Scholar
  383. S.J. Pennycook, A.R. Lupini, M. Varela, A.Y. Borisevich, Y. Peng, M.F. Chisholm, N. Dellby, O. Krivanek, P.D. Nellist, Z.S. Szlagyi, G. Duscher, Sub-angstrom resolution through aberration-corrected STEM. Microsc. Microanal. 9, 926–927 (2003a)Google Scholar
  384. S.J. Pennycook, A.R. Lupini, A. Kadavanich, J.R. McBride, S.J. Rosenthal, R.C. Puetter, A. Yahil, O.L. Krivanek, N. Dellby, P.D. Nellist, G. Duscher, L.G. Wang, S.T. Pantelides, Aberration-corrected scanning transmission electron microscopy: The potential for nano- and interface science. Z. Metalkd. 94, 350–357 (2003b)Google Scholar
  385. S.J. Pennycook, A.R. Lupini, M. Varela, A. Borisevich, M.F. Chisholm, E. Abe, N. Dellby, O.L. Krivanek, P.D. Nellist, L.G. Wang, R. Buczko, X. Fan, S.T. Pantelides, in Spatially Resolved Characterization of Local Phenomena in Materials and Nanostructures, ed. by D.A. Bonnell, A.J. Piqueras, P. Shreve, F. Zypman (Materials Research Society, Warrendale, PA, G1.1, 2003c)Google Scholar
  386. S.J. Pennycook, A.R. Lupini, M. Varela, A.Y. Borisevich, Y. Peng, M.P. Oxley, K. van Benthem, M.F. Chisholm, in Scanning Microscopy for Nanotechnology: Techniques and Applications, ed. by W. Zhou, Z.L. Wang (Springer, New York, 2007), pp. 152–191Google Scholar
  387. S.J. Pennycook, J. Narayan, Direct imaging of dopant distributions in silicon by scanning-transmission electron-microscopy. Appl. Phys. Lett. 45, 385–387 (1984)CrossRefGoogle Scholar
  388. S.J. Pennycook, J. Narayan, Atom location by axial-electron-channeling analysis. Phys. Rev. Lett. 54, 1543–1546 (1985)CrossRefGoogle Scholar
  389. S.J. Pennycook, M. Varela, A.R. Lupini, M.P. Oxley, M.F. Chisholm, Atomic-resolution spectroscopic imaging: Past, present and future. J. Electron Microsc. 58, 87–97 (2009a)CrossRefGoogle Scholar
  390. S.J. Pennycook, M. Varela, M.F. Chisholm, A.Y. Borisevich, A.R. Lupini, K. van Benthem, M.P. Oxley, W. Luo, J.R. McBride, S.J. Rosenthal, S.H. Oh, D.L. Sales, S.I. Molina, K. Sohlberg, S.T. Pantelides, in Oxford Handbook of Nanoscience and Nanotechnology, ed. by A.V. Narlikar, Y.Y. Fu (Oxford University Press, Oxford, 2010), pp. 205–248Google Scholar
  391. T. Plamann, M.J. Hÿtch, Tests on the validity of the atomic column approximation for STEM probe propagation. Ultramicroscopy 78, 153–161 (1999)CrossRefGoogle Scholar
  392. B. Rafferty, P.D. Nellist, S.J. Pennycook, On the origin of transverse incoherence in Z-contrast STEM. J. Electron Microsc. 50, 227–233 (2001)CrossRefGoogle Scholar
  393. Rayleigh, Lord, On the theory of optical images with special reference to the microscope. Philos. Mag. 42(5), 167–195 (1896)Google Scholar
  394. R. Reichelt, A. Engel, Monte carlo calculations of elastic and inelastic electron scattering in biological and plastic materials. Ultramicroscopy 13, 279–293 (1984)CrossRefGoogle Scholar
  395. M. Retsky, Observed single atom elastic cross-sections in a scanning electron-microscope. Optik 41, 127–142 (1974)Google Scholar
  396. S.B. Rice, J.Y. Koo, M.M. Disko, M.M.J. Treacy, On the imaging of Pt atoms in zeolite frameworks. Ultramicroscopy 34, 108–118 (1990)CrossRefGoogle Scholar
  397. H. Rose, Phase-contrast in scanning-transmission electron-microscopy. Optik 39, 416–436 (1974)Google Scholar
  398. H. Rose, Image formation by inelastically scattered electrons in electron microscopy. Optik 45, 139–158 and 187–208 (1976)Google Scholar
  399. H. Rose, Information transfer in transmission electron microscopy. Ultramicroscopy 15, 173–191 (1984)CrossRefGoogle Scholar
  400. H. Rose, in Advances in Imaging and Electron Physics, vol. 153, ed. by P.W. Hawkes (Elsevier, Amsterdam, The Netherlands, 2008), pp. 3–39Google Scholar
  401. S.J. Rosenthal, J. McBride, S.J. Pennycook, L.C. Feldman, Synthesis, surface studies, composition and structural characterization of CdSe, core/shell and biologically active nanocrystals. Surf. Sci. Rep. 62, 111–157 (2007)CrossRefGoogle Scholar
  402. C.J. Rossouw, Coherence in inelastic electron-scattering. Ultramicroscopy 16, 241–254 (1985)CrossRefGoogle Scholar
  403. C.J. Rossouw, L.A. Bursill, Diffuse scattering of fast electrons in barium titanate. Acta Crystallogr B41, 248–254 (1985)Google Scholar
  404. C.J. Rossouw, P.S. Turner, T.J. White, Axial electron-channelling analysis of perovskite. I: Theory and experiment for CaTiO3. Philos. Mag. B. 57, 209–225 (1988a)CrossRefGoogle Scholar
  405. C.J. Rossouw, P.S. Turner, T.J. White, Axial electron-channelling analysis of perovskite. II: Site identification of Sr, Zr and U impurities. Philos. Mag. B. 57, 227–241 (1988b)CrossRefGoogle Scholar
  406. C.J. Rossouw, M.J. Whelan, Diffraction contrast retained by plasmon and K-loss electrons. Ultramicroscopy 6, 53–66 (1981)CrossRefGoogle Scholar
  407. C.J. Rossouw, L.J. Allen, S.D. Findlay, M.P. Oxley, Channelling effects in atomic resolution STEM. Ultramicroscopy 96, 299–312 (2003)CrossRefGoogle Scholar
  408. C.J. Rossouw, C.T. Forwood, M.A. Gibson, P.R. Miller, Statistical ALCHEMI: General formulation and method with application to Ti-Al ternary alloys. Philos. Mag. A 74, 57–76 (1996a)CrossRefGoogle Scholar
  409. C.J. Rossouw, C.T. Forwood, M.A. Gibson, P.R. Miller, Zone-axis convergent-beam electron diffraction and ALCHEMI analysis of Ti-Al alloys with ternary additions. Philos. Mag. A, 74, 77–102 (1996b)CrossRefGoogle Scholar
  410. C.J. Rossouw, V.W. Maslen, Localization and ALCHEMI for zone axis orientations. Ultramicroscopy 21, 277–289 (1987)CrossRefGoogle Scholar
  411. C.J. Rossouw, P.S. Turner, T.J. White, A.J. Oconnor, Statistical-analysis of electron channeling microanalytical data for the determination of site occupancies of impurities. Philos. Mag. Lett. 60, 225–232 (1989)CrossRefGoogle Scholar
  412. E. Ruska, The Early Development of Electron Lenses and Electron Microscopy (Stuttgart, Hirzel, 1980)Google Scholar
  413. E. Ruska, The development of the electron-microscope and of electron-microscopy. Rev. Mod. Phys. 59, 627–638 (1987)CrossRefGoogle Scholar
  414. M. Saito, K. Kimoto, T. Nagai, S. Fukushima, D. Akahoshi, H. Kuwahara, Y. Matsui, K. Ishizuka, Local crystal structure analysis with 10-pm accuracy using scanning transmission electron microscopy. J. Electron. Microsc. 58, 131–136 (2009)CrossRefGoogle Scholar
  415. Y. Sato, J.P. Buban, T. Mizoguchi, N. Shibata, M. Yodogawa, T. Yamamoto, Y. Ikuhara, Role of Pr segregation in acceptor-state formation at ZnO grain boundaries. Phys. Rev. Lett. 97, 106802 (2006)Google Scholar
  416. H. Sawada, F. Hosokawai, T. Kaneyama, T. Ishizawa, M. Terao, M. Kawazoe, T. Sannomiya, T. Tomita, Y. Kondo, T. Tanaka, Y. Oshima, Y. Tanishiro, N. Yamamoto, K. Takayanagi, Achieving 63 pm resolution in scanning transmission electron microscope with spherical aberration corrector. Jpn. J. Appl. Phys. 46, L568–L570 (2007)CrossRefGoogle Scholar
  417. H. Sawada, Y. Tanishiro, N. Ohashi, T. Tomita, F. Hosokawa, T. Kaneyama, Y. Kondo, K. Takayanagi, STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun. J. Electron Microsc. 58, 357–361 (2009)CrossRefGoogle Scholar
  418. H. Sawada, T. Tomita, M. Naruse, T. Honda, P. Hambridge, P. Hartel, M. Haider, C. Hetherington, R. Doole, A. Kirkland, J. Hutchison, J. Titchmarsh, D. Cockayne, Experimental evaluation of a spherical aberration-corrected TEM and STEM. J. Electron Microsc. 54, 119–121 (2005)CrossRefGoogle Scholar
  419. M. Scheinfein, A .Muray, M. Isaacson, Electron-energy loss spectroscopy across a metal-insulator interface at sub-nanometer spatial-resolution. Ultramicroscopy 16, 233–239 (1985)CrossRefGoogle Scholar
  420. O. Scherzer, Uber einige Fehler von Elektronenlinsen. Z. Physik 101, 114–132 (1936)Google Scholar
  421. O. Scherzer, Das theoretisch erreichbare Auflösungsvermögen des Elektronenmikroskops. Z. Physik 114, 427–434 (1939)CrossRefGoogle Scholar
  422. O. Scherzer, Sparische und chromatische Korrektur von Electronen-Linsen. Optik 2, 114–132 (1947)Google Scholar
  423. O. Scherzer, The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20, 20–29 (1949)CrossRefGoogle Scholar
  424. C. Scheu, Electron energy-loss near-edge structure studies at the atomic level: Reliability of the spatial difference technique. J. Microsc.-Oxford 207, 52–57 (2002)CrossRefGoogle Scholar
  425. L.I. Schiff, Ultimate resolving power of the electron miscroscope. Phys. Rev. 61, 721 (1942)CrossRefGoogle Scholar
  426. D.A. Shashkov, D.A. Muller, D.N. Seidman, Atomic-scale structure and chemistry of ceramic/metal interfaces–II. Solute segregation at MgO/Cu (Ag) and CdO/Ag (Au) interfaces. Acta Mater. 47, 3953–3963 (1999)CrossRefGoogle Scholar
  427. N. Shibata, S.D. Findlay, S. Azuma, T. Mizoguchi, T. Yamamoto, Y. Ikuhara, Atomic-scale imaging of individual dopant atoms in a buried interface. Nat. Mater. 8, 654–658 (2009)CrossRefGoogle Scholar
  428. N. Shibata, G.S. Painter, P.F. Becher, S.J. Pennycook, Atomic ordering at an amorphous/crystal interface. Appl. Phys. Lett. 89, 051908 (2006)Google Scholar
  429. N. Shibata, G.S. Painter, R.L. Satet, M.J. Hoffmann, S.J. Pennycook, P.F. Becher, Rare-earth adsorption at intergranular interfaces in silicon nitride ceramics: Subnanometer observations and theory. Phys. Rev. B 72, 140101 (2005)Google Scholar
  430. N. Shibata, S.J. Pennycook, T.R. Gosnell, G.S. Painter, W.A. Shelton, P.F. Becher, Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions. Nature 428, 730–733 (2004)CrossRefGoogle Scholar
  431. D.H. Shin, E.J. Kirkland, J. Silcox, Annular dark field electron-microscope images with better than 2 Å resolution at 100 kV. Appl. Phys. Lett. 55, 2456–2458 (1989)CrossRefGoogle Scholar
  432. A. Singhal, J.C. Yang, J.M. Gibson, STEM-based mass spectroscopy of supported Re clusters. Ultramicroscopy 67, 191–206 (1997)CrossRefGoogle Scholar
  433. D.J. Smith, The realization of atomic resolution with the electron microscope. Rep. Prog. Phys. 60, 1513–1580 (1997)CrossRefGoogle Scholar
  434. K. Sohlberg, S. Rashkeev, A.Y. Borisevich, S.J. Pennycook, S.T. Pantelides, Origin of anomalous Pt-Pt distances in the Pt/alumina catalytic system. Chemphyschem 5, 1893–1897 (2004)CrossRefGoogle Scholar
  435. G.E. Sosinsky, N.R. Francis, D.J. Derosier, J.S. Wall, M.N. Simon, J. Hainfeld, Mass determination and estimation of subunit stoichiometry of the bacterial hook basal body flagellar complex of salmonella-typhimurium by scanning-transmission electron-microscopy. Proc. Natl. Acad. Sci. U.S.A. 89, 4801–4805 (1992)CrossRefGoogle Scholar
  436. J.C.H. Spence, The future of atomic resolution electron microscopy for materials science. Mater. Sci. Eng. R 26, 1–49 (1999)CrossRefGoogle Scholar
  437. J.C.H. Spence, J.M. Cowley, Lattice imaging in STEM. Optik 50, 129–142 (1978)Google Scholar
  438. J.C.H. Spence, J. Lynch, STEM microanalysis by transmission electron-energy loss spectroscopy in crystals. Ultramicroscopy 9, 267–276 (1982)CrossRefGoogle Scholar
  439. J.C.H. Spence, M. Kuwabara, Y. Kim, Localization effects on quantification in axial and planar ALCHEMI. Ultramicroscopy 26, 103–112 (1988)CrossRefGoogle Scholar
  440. S. Stemmer, A. Sane, N.D. Browning, T.J. Mazanec, Characterization of oxygen-deficient SrCoO3-δ by electron energy-loss spectroscopy and Z-contrast imaging. Solid State Ionics 130, 71–80 (2000)CrossRefGoogle Scholar
  441. K. Suenaga, T. Tence, C. Mory, C. Colliex, H. Kato, T. Okazaki, H. Shinohara, K. Hirahara, S. Bandow, S. Iijima, Element-selective single atom imaging. Science 290, 2280–2282 (2000)CrossRefGoogle Scholar
  442. C. Süsskind, in The Beginnings of Electron-Microscopy, ed. by P.W. Hawkes, Advances in Imaging and Electron Physics, suppl. 16 (Academic, San Diego, 1985), pp. 501–523Google Scholar
  443. J. Taftø, The cation-atom distribution in a (Cr, Fe, Al, Mg)3O4 spinel as revealed from the channelling effect in electron-induced X-ray emission. J. Appl. Crystallogr. 15, 378–381 (1982)CrossRefGoogle Scholar
  444. J. Taftø, O. Krivanek, Site-specific valence determination by electron energy-loss spectroscopy. Phys. Rev. Lett. 48, 560–563 (1982)CrossRefGoogle Scholar
  445. J. Taftø, J.C.H. Spence, Crystal site location of iron and trace elements in a magnesium-iron olivine by a new crystallographic technique. Science 218, 49–51 (1982a)CrossRefGoogle Scholar
  446. J. Taftø, J.C.H. Spence, Atomic site determination using the channeling effect in electron-induced X-ray emission. Ultramicroscopy 9, 243–248 (1982b)CrossRefGoogle Scholar
  447. E. Takasuka, K. Asai, K. Fujita, M.F. Chisholm, S.J. Pennycook, High-resolution Z-contrast observation of GaAs/Si heterointerfaces through scanning-transmission electron-microscope. Jpn. J. Appl. Phys. 31, L1788-L1790 (1992)CrossRefGoogle Scholar
  448. M. Takeguchi, A. Hashimoto, M. Shimojo, K. Mitsuishi, K. Furuya, Development of a stage-scanning system for high-resolution confocal STEM. J. Electron Microsc. 57, 123–127 (2008)CrossRefGoogle Scholar
  449. M. Takeguchi, M.R. McCartney, D.J. Smith, Mapping In concentration, strain, and internal electric field in InGaN/GaN quantum well structure. Appl. Phys. Lett. 84, 2103–2105 (2004)CrossRefGoogle Scholar
  450. Transmission Electron Aberration-Corrected Microscope Project. (accessed Nov. 3, 2010)
  451. C.M. Tey, H.Y. Liu, A.G. Cullis, I.M. Ross, M. Hopkinson, Structural studies of a combined InAlAs/InGaAs capping layer on 1.3-μm InAs/GaAs quantum dots. J Cryst Growth 285, 17–23 (2005)CrossRefGoogle Scholar
  452. M.G.R. Thomson, Resolution and contrast in conventional and scanning high-resolution transmission electron-microscopes. Optik 39, 15–38 (1973)Google Scholar
  453. F. Thon, D. Willasch, Imaging of heavy atoms in darkfield electron-microscopy using hollow cone illumination. Optik 36, 55–58 (1972)Google Scholar
  454. A. Thust, High-resolution transmission electron microscopy on an absolute contrast scale. Phys. Rev. Lett. 102, 220801 (2009)Google Scholar
  455. J.M. Titchmarsh, Detection of electron energy-loss edge shifts and fine structure variations at grain boundaries and interfaces. Ultramicroscopy 78, 241–250 (1999)CrossRefGoogle Scholar
  456. M.M.J. Treacy, J.M. Gibson, Coherence and multiple-scattering in “Z-contrast” images. Ultramicroscopy 52, 31–53 (1993)CrossRefGoogle Scholar
  457. M.M.J. Treacy, A. Howie, S.J. Pennycook, in Electron Microscopy and Analysis 1979 ed. by T. Mulvey (Institute of Physics, Brighton, 1980), pp. 261–266Google Scholar
  458. M.M.J. Treacy, A. Howie, C.J. Wilson, Z-contrast of platinum and palladium catalysts. Philos. Mag. A 38, 569–585 (1978)CrossRefGoogle Scholar
  459. M.M.J. Treacy, S.B. Rice, Catalyst particle sizes from Rutherford scattered intensities. J. Microsc.-Oxford 156, 211–234 (1989)CrossRefGoogle Scholar
  460. K. Urban, Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321, 506–510 (2008)CrossRefGoogle Scholar
  461. S. Van Aert, J. Verbeeck, R. Erni, S. Bals, M. Luysberg, D. Van Dyck, G. Van Tendeloo, Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy. Ultramicroscopy 109, 1236–1244 (2009)CrossRefGoogle Scholar
  462. K. van Benthem, A.R. Lupini, M. Kim, H.S. Baik, S. Doh, J.H. Lee, M.P. Oxley, S.D. Findlay, L.J. Allen, J.T. Luck, S.J. Pennycook, Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl. Phys. Lett. 87, 034104 (2005)Google Scholar
  463. K. van Benthem, A.R. Lupini, M.P. Oxley, S.D. Findlay, L.J. Allen, S.J. Pennycook, Three-dimensional ADF imaging of individual atoms by through-focal series scanning transmission electron microscopy. Ultramicroscopy 106, 1062–1068 (2006)CrossRefGoogle Scholar
  464. D. Van Dyck, Is the frozen phonon model adequate to describe inelastic phonon scattering? Ultramicroscopy 109, 677–682 (2009)CrossRefGoogle Scholar
  465. J.B. Vandersande, E.L. Hall, Applications of dedicated scanning-transmission electron-microscopy to non-metallic materials. J. Am. Ceram. Soc. 62, 246–254 (1979)CrossRefGoogle Scholar
  466. R. Vanfleet, D.A. Muller, H.J. Gossmann, P.H. Citrin, J. Silcox, in Advances in Materials Problem Solving with the Electron Microscope, ed. by J. Bentley, C. Allen, U. Dahmen, I. Petrov (Materials Research Society, Warrendale, PA, 2001), pp. 173–178Google Scholar
  467. M. Varela, D. Arias, Z. Sefrioui, C. Leon, C. Ballesteros, S.J. Pennycook, J. Santamaria, Direct correlation between Tc and CuO2 bilayer spacing in YBa2Cu3O7-x. Phys. Rev. B 66, 134517 (2002)Google Scholar
  468. M. Varela, S.D. Findlay, A.R. Lupini, H.M. Christen, A.Y. Borisevich, N. Dellby, O.L. Krivanek, P.D. Nellist, M.P. Oxley, L.J. Allen, S.J. Pennycook, Spectroscopic imaging of single atoms within a bulk solid. Phys. Rev. Lett. 92, 095502 (2004)Google Scholar
  469. M. Varela, A.R. Lupini, S.J. Pennycook, Z. Sefrioui, J. Santamaria, Nanoscale analysis of YBa2Cu3O7-x/La0.67Ca0.33MnO3 interfaces. Solid State Electron. 47, 2245–2248 (2003)CrossRefGoogle Scholar
  470. M. Varela, M.P. Oxley, W. Luo, J. Tao, M. Watanabe, A.R. Lupini, S.T. Pantelides, S.J. Pennycook, Atomic-resolution imaging of oxidation states in manganites. Phys. Rev. B 79, 085117 (2009)Google Scholar
  471. J. Verbeeck, O.I. Lebedev, G. Van Tendeloo, J. Silcox, B. Mercey, M. Hervieu, A.M. Haghiri-Gosnet, Electron energy-loss spectroscopy study of a (LaMnO3)(8)(SrMnO3)(4) heterostructure. Appl. Phys. Lett. 79, 2037–2039 (2001)CrossRefGoogle Scholar
  472. D. Viehland, J. Li, Z. Xu, Direct evidence of substituent clustering in lower valent K+ modified PbZrO3 by high-resolution Z-contrast imaging. Appl. Phys. A: Mater. Sci. Process. 79, 1955–1958 (2004)Google Scholar
  473. M. von Ardenne, Das Elektronen-Rastermikroskop. Praktische Ausführung. Z. Tech. Phys. 19, 407–416 (1938a)Google Scholar
  474. M. von Ardenne, Das Elektronen-Rastermikroskop. Theoretische Grundlagen. Z. Physik 109, 553–572 (1938a)CrossRefGoogle Scholar
  475. M. von Ardenne, Die Grenzen für das Auflösungsvermögen des Elektronenmikroskops. Z. Physik 108, 338–353 (1938c)CrossRefGoogle Scholar
  476. M. von Ardenne, Intensitätsfragen und Auflösungsvermögen des Elektronenmikroskops. Z. Physik 112, 744–752 (1939)CrossRefGoogle Scholar
  477. M. von Ardenne, Über das Auftreten von Schwärzungslinien bei der elektronenmikroskopischen Abbildung kristalliner Lamellen. Z. Physik 116, 736 (1940a)CrossRefGoogle Scholar
  478. M. von Ardenne, Über ein Universal-Elektronenmikroskop für Hellfeld-, Dunkelfeld- und Stereobild-Betrieb. Z. Physik 115, 339–368 (1940b)CrossRefGoogle Scholar
  479. M. von Ardenne, Elektronen-Übermikroskopie (Springer, Berlin, 1940c)CrossRefGoogle Scholar
  480. M. von Ardenne, in The Beginnings of Electron-Microscopy, ed. by P.W. Hawkes, Advances in Imaging and Electron Physics, Suppl 16. (Academic, Orlando, FL, 1985), pp. 1–21Google Scholar
  481. M. von Ardenne, in The Growth of Electron Microscopy, ed. by T. Mulvey. Advances in Imaging and Electron Physics, vol. 96 (Academic, San Diego, 1996), pp. 635–652CrossRefGoogle Scholar
  482. B. von Borries, E. Ruska, Der Einfluß von Elektroneninterferenzen auf die Abbildung von Kristallen im Übermikroskop. Naturwiss. 23, 366–367 (1940)CrossRefGoogle Scholar
  483. H.S. von Harrach, in Advances in Imaging and Electron Physics, vol. 159. ed. by P.W. Hawkes (Elsevier, Amsterdam, The Netherlands, 2009), pp. 287–323Google Scholar
  484. H.S. von Harrach, Medium-voltage field-emission STEM – the ultimate AEM. Microsc. Microanal. Microstruct. 5, 153–164 (1994)CrossRefGoogle Scholar
  485. H.S. von Harrach, A.W. Nicholls, D.E. Jesson, S.J. Pennycook, in Electron Microscopy and Analysis 1993, ed. by A.J. Craven, Institute of Physics Conference Series No. 138. (Institute of Physics, Bristol, 1993), pp. 499–502Google Scholar
  486. P. Voyles, D. Muller, E. Kirkland, Depth-dependent imaging of individual dopant atoms in silicon. Microsc. Microanal. 10, 291–300 (2004)CrossRefGoogle Scholar
  487. P.M. Voyles, J.L. Grazul, D.A. Muller, Imaging individual atoms inside crystals with ADF-STEM. Ultramicroscopy 96, 251–273 (2003)CrossRefGoogle Scholar
  488. P.M. Voyles, D.A. Muller, J.L. Grazul, P.H. Citrin, H.J.L. Gossmann, Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416, 826–829 (2002)CrossRefGoogle Scholar
  489. J. Wall, J. Langmore, M. Isaacson, A.V. Crewe, Scanning-transmission electron-microscopy at high-resolution. Proc. Natl. Acad. Sci. USA. 71, 1–5 (1974)CrossRefGoogle Scholar
  490. J.S. Wall, M.N. Simon, J.F. Hainfeld, in Advances in Imaging and Electron Physics, vol. 159, ed. by P.W. Hawkes (Elsevier, Amsterdam, The Netherlands, 2009), pp. 101–121Google Scholar
  491. D.J. Wallis, R.S. Balmer, A.M. Keir, T. Martin, Z-contrast imaging of AlN exclusion layers in GaN field-effect transistors. Appl. Phys. Lett. 87, 042101 (2005)Google Scholar
  492. D.J. Wallis, N.D. Browning, P.D. Nellist, S.J. Pennycook, I. Majid, Y. Liu, J.B. Van der Sande, Atomic structure of a 36.8 (210) tilt grain boundary in TiO2. J. Am. Ceram. Soc. 80, 499–502 (1997a)CrossRefGoogle Scholar
  493. D.J. Wallis, N.D. Browning, S. Sivananthan, P.D. Nellist, S.J. Pennycook, Atomic layer graphoepitaxy for single crystal heterostructures. Appl. Phys. Lett. 70, 3113–3115 (1997b)CrossRefGoogle Scholar
  494. P. Wang, A.L. Bleloch, M. Falke, P.J. Goodhew, J. Ng, M. Missous, Direct measurement of composition of buried quantum dots using aberration-corrected scanning transmission electron microscopy. Appl. Phys. Lett. 89, 072111 (2006)Google Scholar
  495. S.W. Wang, A.Y. Borisevich, S.N. Rashkeev, M.V. Glazoff, K. Sohlberg, S.J. Pennycook, S.T. Pantelides, Dopants adsorbed as single atoms prevent degradation of catalysts. Nat. Mater. 3, 274–274 (2004)CrossRefGoogle Scholar
  496. Z.L. Wang, The ‘frozen-lattice’ approach for incoherent phonon excitation in electron scattering. How accurate is it? Acta Cryst. A 54, 460–467 (1998a)CrossRefGoogle Scholar
  497. Z.L. Wang, An optical potential approach to incoherent multiple thermal diffuse scattering in quantitative HRTEM. Ultramicroscopy 74, 7–26 (1998b)CrossRefGoogle Scholar
  498. Z.L. Wang, J.M. Cowley, Simulating high-angle annular dark-field STEM images including inelastic thermal diffuse-scattering. Ultramicroscopy 31, 437–454 (1989)CrossRefGoogle Scholar
  499. Z.L. Wang, J.M. Cowley, Dynamic theory of high-angle annular-dark-field STEM lattice images for a Ge/Si interface. Ultramicroscopy 32, 275–289 (1990)CrossRefGoogle Scholar
  500. I.R.M. Wardell, P.E. Bovey, in Advances in Imaging and Electron Physics, vol. 159, ed. by P.W. Hawkes (Elsevier, 2009), pp. 221–285Google Scholar
  501. B.E. Warren, X-ray Diffraction (Dover, New York, NY, 1990)Google Scholar
  502. H. Watanabe, R. Uyeda, Energy-selecting electron microscope. J. Phys. Soc. Jpn. 17, 569–570 (1962)CrossRefGoogle Scholar
  503. K. Watanabe, T. Yamazaki, I. Hashimoto, M. Shiojiri, Atomic-resolution annular dark-field STEM image calculations. Phys. Rev. B 64, 115432 (2001)Google Scholar
  504. M. Watanabe, D.W. Ackland, A. Burrows, C.J. Kiely, D.B. Williams, O.L. Krivanek, N. Dellby, M.F. Murfitt, Z.S. Szilagyi, Improvements in the X-ray analytical capabilities of a scanning transmission electron microscope by spherical-aberration correction. Microsc. Microanal. 12, 515–526 (2006)CrossRefGoogle Scholar
  505. M. Weyland, P.A. Midgley, J.M. Thomas, Electron tomography of nanoparticle catalysts on porous supports: A new technique based on Rutherford scattering. J. Phys. Chem. B 105, 7882–7886 (2001)CrossRefGoogle Scholar
  506. R.F. Whiting, F.P. Ottensmeyer, Heavy atoms in model compounds and nucleic acids imaged by dark field transmission electron microscopy. J. Mol. Biol. 67, 173–176 (1972)CrossRefGoogle Scholar
  507. D.B. Williams, J.W. Edington, High-resolution microanalysis in materials science using electron-energy loss measurements. J. Microsc.-Oxford 108, 113–145 (1976)CrossRefGoogle Scholar
  508. D.B. Williams, A.D. Romig, Studies of interfacial segregation in the analytical electron-microscope – a brief review. Ultramicroscopy 30, 38–51 (1989)CrossRefGoogle Scholar
  509. G.B. Winkelman, C. Dwyer, T.S. Hudson, Nguyen-D. Manh, M. Doblinger, R.L. Satet, M.J. Hoffmann, D.J.H. Cockayne, Arrangement of rare-earth elements at prismatic grain boundaries in silicon nitride. Philos. Mag. Lett. 84, 755–762 (2004)CrossRefGoogle Scholar
  510. G.B. Winkelman, C. Dwyer, T.S. Hudson, Nguyen-D. Manh, M. Doblinger, R.L. Satet, M.J. Hoffmann, D.J.H. Cockayne, Three-dimensional organization of rare-earth atoms at grain boundaries in silicon nitride. Appl. Phys. Lett. 87, 061911 (2005)Google Scholar
  511. D.B. Wittry, An electron spectrometer for use with transmission electron microscope. J. Phys. D. 2, 1757–1766 (1969)CrossRefGoogle Scholar
  512. D.B. Wittry, R.P. Ferrier, V.E. Cosslett, Selected-area electron spectrometry in transmission electron microscope. J. Phys. D. 2, 1767–1773 (1969)CrossRefGoogle Scholar
  513. Y. Xiao, F. Patolsky, E. Katz, J.F. Hainfeld, I. Willner, “Plugging into enzymes”: Nanowiring of redox enzymes by a gold nanoparticle. Science 299, 1877–1881 (2003)CrossRefGoogle Scholar
  514. H.L. Xin, D.A. Muller, Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J. Electron Microsc. 58, 157–165 (2009)CrossRefGoogle Scholar
  515. Y. Xin, E.M. James, I. Arslan, S. Sivananthan, N.D. Browning, S.J. Pennycook, F. Omnes, B. Beaumont, J.P. Faurie, P. Gibart, Direct experimental observation of the local electronic structure at threading dislocations in metalorganic vapor phase epitaxy grown wurtzite GaN thin films. Appl. Phys. Lett. 76, 466–468 (2000a)CrossRefGoogle Scholar
  516. Y. Xin, E.M. James, N.D. Browning, S.J. Pennycook, Atomic resolution Z-contrast imaging of semiconductors. J. Electron Microsc. 49, 231–244 (2000b)CrossRefGoogle Scholar
  517. Y. Xin, S.J. Pennycook, N.D. Browning, P.D. Nellist, S. Sivananthan, F. Omnes, B. Beaumont, J.P. Faurie, P. Gibart, Direct observation of the core structures of threading dislocations in GaN. Appl. Phys. Lett. 72, 2680–2682 (1998)CrossRefGoogle Scholar
  518. P. Xu, E.J. Kirkland, J. Silcox, R. Keyse, High-resolution imaging of silicon (111) using a 100 keV STEM. Ultramicroscopy 32, 93–102 (1990)CrossRefGoogle Scholar
  519. X. Xu, S.P. Beckman, P. Specht, E.R. Weber, D.C. Chrzan, R.P. Erni, I. Arslan, N. Browning, A. Bleloch, C. Kisielowski, Distortion and segregation in a dislocation core region at atomic resolution. Phys. Rev. Lett. 95, 145501 (2005)Google Scholar
  520. Z.K. Xu, S.M. Gupta, D. Viehland, Y.F. Yan, S.J. Pennycook, Direct imaging of atomic ordering in undoped and La-doped Pb(Mg1/3Nb2/3)O3. J. Am. Ceram. Soc. 83, 181–188 (2000)CrossRefGoogle Scholar
  521. T. Yamazaki, N. Nakanishi, A. Rečnik, M. Kawasaki, K. Watanabe, M. Čeh, M. Shiojiri, Quantitative high-resolution HAADF-STEM analysis of inversion boundaries in Sb2O3-doped zinc oxide. Ultramicroscopy 98, 305–316 (2004)CrossRefGoogle Scholar
  522. T. Yamazaki, K. Watanabe, Y. Kikuchi, M. Kawasaki, I. Hashimoto, M. Shiojiri, Two-dimensional distribution of As atoms doped in a Si crystal by atomic-resolution high-angle annular dark field STEM. Phys. Rev. B 61, 13833–13839 (2000a)CrossRefGoogle Scholar
  523. T. Yamazaki, K. Watanabe, A. Recnik, M. Čeh, M. Kawasaki, M. Shiojiri, Simulation of atomic-scale high-angle annular dark field scanning transmission electron microscopy images. J. Electron Microsc. 49, 753–759 (2000b)CrossRefGoogle Scholar
  524. Y. Yan, M.F. Chisholm, G. Duscher, A. Maiti, S.J. Pennycook, S.T. Pantelides, Impurity-induced structural transformation of a MgO grain boundary. Phys. Rev. Lett. 81, 3675–3678 (1998a)CrossRefGoogle Scholar
  525. Y. Yan, S.J. Pennycook, A.P. Tsai, Direct imaging of local chemical disorder and columnar vacancies in ideal decagonal Al-Ni-Co quasicrystals. Phys. Rev. Lett. 81, 5145–5148 (1998b)CrossRefGoogle Scholar
  526. Y.F. Yan, S.J. Pennycook, Alloys – atomic structure of the quasicrystal Al72Ni20Co8. Nature 403, 266–267 (2000)CrossRefGoogle Scholar
  527. Y.F. Yan, S.J. Pennycook, Chemical ordering in Al72Ni20Co8 decagonal quasicrystals. Phys. Rev. Lett. 86, 1542–1545 (2001)CrossRefGoogle Scholar
  528. Y.F. Yan, S.J. Pennycook, M. Terauchi, M. Tanaka, Atomic structures of oxygen-associated defects in sintered aluminum nitride ceramics. Microsc. Microanal. 5, 352–357 (1999)Google Scholar
  529. Z. Yu, P.E. Batson, J. Silcox, Artifacts in aberration-corrected ADF-STEM imaging. Ultramicroscopy 96, 275–284 (2003)CrossRefGoogle Scholar
  530. J.F. Yuan, D.R. Beniac, G. Chaconas, F.P. Ottensmeyer, 3D reconstruction of the Mu transposase and the type 1 transpososome: A structural framework for Mu DNA transposition. Genes Develop. 19, 840–852 (2005)CrossRefGoogle Scholar
  531. J. Zach, M. Haider, Aberration correction in a low voltage SEM by a multipole corrector. Nucl. Inst. Meth. A 363, 316–325 (1995)CrossRefGoogle Scholar
  532. E. Zeitler, M.G.R. Thomson, Scanning transmission electron microscopy. Optik 31, 258–280 and 359–366 (1970)Google Scholar
  533. A. Ziegler, J.C. Idrobo, M.K. Cinibulk, C. Kisielowski, N.D. Browning, R.O. Ritchie, Interface structure and atomic bonding characteristics in silicon nitride ceramics. Science 306, 1768–1770 (2004)CrossRefGoogle Scholar
  534. V.A. Zworykin, J. Hillier, R.L. Snyder, A scanning electron microscope. ASTM Bull. 117, 15–23 (1942)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations