Skip to main content

Diagnostic Genome Profiling in Mental Retardation

  • Chapter
  • First Online:
  • 949 Accesses

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 2))

Abstract

Mental retardation occurs in 2–3% of the general population. Chromosomal aberrations are one of the major causes of mental retardation, but despite the significant progresses in the elucidation of mental retardation, the genetic causes of mental retardation remain largely unknown. Conventional karyotyping using light microscopy has been the primary tool for diagnosing chromosomal aberrations in mental retardation for more than 30 years. Several novel methods based on fluorescence in situ hybridization (FISH) and polymerase chain reaction (PCR)-based methods have been developed over recent years to increase the detection yield of copy-number changes (CNVs) at the submicroscopic level (<5–10 Mb) in individuals with mental retardation. In the last few years, genome-wide microarray technologies have resulted in significant increases in the resolution of chromosome analysis. Microarray ­technologies allow genome-wide detection of multiple genomic submicroscopic CNVs. The implementation of these novel molecular-cytogenetic technologies not only showed that submicroscopic genomic aberrations are an important cause of mental retardation, resulting in newly recognized microdeletion/microduplication syndromes, but also allowed for the identification of novel genes causing mental retardation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amiel, J., et al. (2007). Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. American Journal of Human Genetics, 80(5), 988–993.

    Article  PubMed  CAS  Google Scholar 

  • Balciuniene, J., et al. (2007). Recurrent 10q22-q23 deletions: A genomic disorder on 10q associated with cognitive and behavioral abnormalities. American Journal of Human Genetics, 80(5), 938–947.

    Article  PubMed  CAS  Google Scholar 

  • Barrett, M. T., et al. (2004). Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proceedings of the National Academy of Sciences of the United States of America, 101(51), 17765–17770.

    Article  PubMed  CAS  Google Scholar 

  • Bauters, M., et al. (2005). X chromosome array-CGH for the identification of novel X-linked mental retardation genes. European Journal of Medical Genetics, 48(3), 263–275.

    Article  PubMed  Google Scholar 

  • Boehm, D., et al. (2004). Rapid detection of subtelomeric deletion/duplication by novel real-time quantitative PCR using SYBR-green dye. Human Mutation, 23(4), 368–378.

    Article  PubMed  CAS  Google Scholar 

  • Bruder, C. E., et al. (2001). High resolution deletion analysis of constitutional DNA from neurofibromatosis type 2 (NF2) patients using microarray-CGH. Human Molecular Genetics, 10(3), 271–282.

    Article  PubMed  CAS  Google Scholar 

  • Buckley, P. G., et al. (2002). A full-coverage, high-resolution human chromosome 22 genomic microarray for clinical and research applications. Human Molecular Genetics, 11(25), 3221–3229.

    Article  PubMed  CAS  Google Scholar 

  • Casas, K. A., et al. (2004). Chromosome 2q terminal deletion: report of 6 new patients and review of phenotype-breakpoint correlations in 66 individuals. American Journal of Medical Genetics. Part A, 130(4), 331–339.

    Google Scholar 

  • Chelly, J., et al. (2006). Genetics and pathophysiology of mental retardation. European Journal of Human Genetics, 14(6), 701–713.

    Article  PubMed  CAS  Google Scholar 

  • Conrad, D. F., et al. (2006). A high-resolution survey of deletion polymorphism in the human genome. Nature Genetics, 38(1), 75–81.

    Article  PubMed  CAS  Google Scholar 

  • de Brouwer, A. P., et al. (2007). Mutation frequencies of X-linked mental retardation genes in families from the EuroMRX consortium. Human Mutation, 28(2), 207–208.

    Article  PubMed  Google Scholar 

  • de Vries, B. B., et al. (1997). Screening and diagnosis for the fragile X syndrome among the mentally retarded: an epidemiological and psychological survey. Collaborative Fragile X Study Group. American Journal of Human Genetics, 61(3), 660–667.

    Article  PubMed  Google Scholar 

  • de Vries, B. B., et al. (2001). Submicroscopic subtelomeric 1qter deletions: a recognisable phenotype? Journal of Medical Genetics, 38(3), 175–178.

    Article  PubMed  Google Scholar 

  • de Vries, B. B., et al. (2003). Telomeres: A diagnosis at the end of the chromosomes. Journal of Medical Genetics, 40(6), 385–398.

    Article  PubMed  Google Scholar 

  • de Vries, B. B., et al. (2005). Diagnostic genome profiling in mental retardation. American Journal of Human Genetics, 77(4), 606–616.

    Article  PubMed  Google Scholar 

  • Dobyns, W. B., et al. (1991). Clinical and molecular diagnosis of Miller-Dieker syndrome. American Journal of Human Genetics, 48(3), 584–594.

    PubMed  CAS  Google Scholar 

  • Edwards, J. H., et al. (1960). A new trisomic syndrome. Lancet, 1, 787–790.

    Article  PubMed  CAS  Google Scholar 

  • Ekong, R., et al. (2004). Chromosomal anomalies on 6p25 in iris hypoplasia and Axenfeld-Rieger syndrome patients defined on a purpose-built genomic microarray. Human Mutation, 24(1), 76–85.

    Article  PubMed  CAS  Google Scholar 

  • Engels, H., et al. (2007). DNA microarray analysis identifies candidate regions and genes in unexplained mental retardation. Neurology, 68(10), 743–750.

    Article  PubMed  CAS  Google Scholar 

  • Flint, J., et al. (1995). The detection of subtelomeric chromosomal rearrangements in idiopathic mental retardation. Nature Genetics, 9(2), 132–140.

    Article  PubMed  CAS  Google Scholar 

  • Flint, J., & Knight, S. (2003). The use of telomere probes to investigate submicroscopic rearrangements ­associated with mental retardation. Current Opinion in Genetics & Development, 13(3), 310–316.

    Article  CAS  Google Scholar 

  • Ford, C. E., & Hamerton, J. L. (1956a). A colchicine, hypotonic citrate, squash sequence for mammalian ­chromosomes. Stain Technology, 31(6), 247–251.

    PubMed  CAS  Google Scholar 

  • Ford, C. E., & Hamerton, J. L. (1956b). The chromosomes of man. Nature, 178(4541), 1020–1023.

    Article  PubMed  CAS  Google Scholar 

  • Ford, C. E., et al. (1959). A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner’s syndrome). Lancet, 1(7075), 711–713.

    Article  PubMed  CAS  Google Scholar 

  • Friedman, J. M., et al. (2006). Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation. American Journal of Human Genetics, 79(3), 500–513.

    Article  PubMed  CAS  Google Scholar 

  • Harada, N., et al. (2004). Subtelomere specific microarray based comparative genomic hybridisation: A rapid detection system for cryptic rearrangements in idiopathic mental retardation. Journal of Medical Genetics, 41(2), 130–136.

    Article  PubMed  CAS  Google Scholar 

  • Hinds, D. A., et al. (2006). Common deletions and SNPs are in linkage disequilibrium in the human genome. Nature Genetics, 38(1), 82–85.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J., et al. (2004). Whole genome DNA copy number changes identified by high density oligonucleotide arrays. Human Genomics, 1(4), 287–299.

    Article  PubMed  CAS  Google Scholar 

  • Iafrate, A. J., et al. (2004). Detection of large-scale variation in the human genome. Nature Genetics, 36(9), 949–951.

    Article  PubMed  CAS  Google Scholar 

  • Ishkanian, A. S., et al. (2004). A tiling resolution DNA microarray with complete coverage of the human genome. Nature Genetics, 36(3), 299–303.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, P. A., & Strong, J. A. (1959). A case of human intersexuality having a possible XXY sex-determining mechanism. Nature, 183(4657), 302–303.

    Article  PubMed  CAS  Google Scholar 

  • Jongmans, M. C., et al. (2006). CHARGE syndrome: The phenotypic spectrum of mutations in the CHD7 gene. Journal of Medical Genetics, 43(4), 306–314.

    Article  PubMed  CAS  Google Scholar 

  • Kallioniemi, A., et al. (1992). Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 258(5083), 818–821.

    Article  PubMed  CAS  Google Scholar 

  • Kirchhoff, M., et al. (2007). MLPA analysis for a panel of syndromes with mental retardation reveals imbalances in 5.8% of patients with mental retardation and dysmorphic features, including duplications of the Sotos syndrome and Williams-Beuren syndrome regions. European Journal of Medical Genetics, 50(1), 33–42.

    Article  PubMed  Google Scholar 

  • Knight, S. J., et al. (1999). Subtle chromosomal rearrangements in children with unexplained mental retardation. Lancet, 354(9191), 1676–1681.

    Article  PubMed  CAS  Google Scholar 

  • Koolen, D. A., et al. (2004). Screening for subtelomeric rearrangements in 210 patients with unexplained mental retardation using multiplex ligation dependent probe amplification (MLPA). Journal of Medical Genetics, 41(12), 892–899.

    Article  PubMed  CAS  Google Scholar 

  • Koolen, D. A., et al. (2006). A new chromosome 17q21.31 microdeletion syndrome associated with a common inversion polymorphism. Nature Genetics, 38(9), 999–1001.

    Article  PubMed  CAS  Google Scholar 

  • Krepischi-Santos, A. C., et al. (2006). Whole-genome array-CGH screening in undiagnosed syndromic patients: Old syndromes revisited and new alterations. Cytogenetic and Genome Research, 115(3–4), 254–261.

    Article  PubMed  CAS  Google Scholar 

  • Ledbetter, D. H., et al. (1981). Deletions of chromosome 15 as a cause of the Prader-Willi ­syndrome. The New England Journal of Medicine, 304(6), 325–329.

    Article  PubMed  CAS  Google Scholar 

  • Lejeune, J., et al. (1959). Study of somatic chromosomes from 9 mongoloid children. Competes Rendus Hebdomadaires des Seances de l’Academis des Sciences, 248(11), 1721–1722.

    CAS  Google Scholar 

  • Leonard, H., et al. (2002). The epidemiology of mental retardation: challenges and opportunities in the new millennium. Mental Retardation and Developmental Disabilities Research Reviews, 8(3), 117–134.

    Article  PubMed  Google Scholar 

  • Lesnik Oberstein, S. A., et al. (2006). Peters Plus syndrome is caused by mutations in B3GALTL, a putative glycosyltransferase. American Journal of Human Genetics, 79(3), 562–566.

    Article  PubMed  CAS  Google Scholar 

  • Lindsay, E. A. (2001). Chromosomal microdeletions: dissecting del22q11 syndrome. Nature Reviews. Genetics, 2(11), 858–868.

    Article  PubMed  CAS  Google Scholar 

  • Locke, D. P., et al. (2004). BAC microarray analysis of 15q11-q13 rearrangements and the impact of segmental duplications. Journal of Medical Genetics, 41(3), 175–182.

    Article  PubMed  CAS  Google Scholar 

  • Lu, X. Y., et al. (2002). The utility of spectral karyotyping in the cytogenetic analysis of newly diagnosed pediatric acute lymphoblastic leukemia. Leukemia, 16(11), 2222–2227.

    Article  PubMed  CAS  Google Scholar 

  • Lu, X., et al. (2007). Clinical implementation of chromosomal microarray analysis: summary of 2513 postnatal cases. PLoS ONE, 2, e327.

    Article  PubMed  CAS  Google Scholar 

  • Luckasson, R., Borthwick-Duffy, S., Buntinx, W. H. E., Coulter, D. L., Snell, M. E., Spitalnik, D. M., et al. (2002). Mental retardation: Definition, classification, and systems of support (10th ed.). Washington: American Association on Mental Retardation.

    Google Scholar 

  • Lugtenberg, D., et al. (2006). ZNF674: A new kruppel-associated box-containing zinc-finger gene involved in nonsyndromic X-linked mental retardation. American Journal of Human Genetics, 78(2), 265–278.

    Article  PubMed  CAS  Google Scholar 

  • Lupski, J. R. (1998). Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends in Genetics, 14(10), 417–422.

    Article  PubMed  CAS  Google Scholar 

  • Magenis, R. E., et al. (1987). Is Angelman syndrome an alternate result of del(15)(q11q13)? American Journal of Medical Genetics, 28(4), 829–838.

    Article  PubMed  CAS  Google Scholar 

  • Magenis, R. E., et al. (1990). Comparison of the 15q deletions in Prader-Willi and Angelman syndromes: specific regions, extent of deletions, parental origin, and clinical consequences. American Journal of Medical Genetics, 35(3), 333–349.

    Article  PubMed  CAS  Google Scholar 

  • Malcolm, S., et al. (1991). Uniparental paternal disomy in Angelman’s syndrome. Lancet, 337(8743), 694–697.

    Article  PubMed  CAS  Google Scholar 

  • Mao, R., & Pevsner, J. (2005). The use of genomic microarrays to study chromosomal abnormalities in mental retardation. Mental Retardation and Developmental Disabilities Research Reviews, 11(4), 279–285.

    Article  PubMed  Google Scholar 

  • McCarroll, S. A., et al. (2006). Common deletion polymorphisms in the human genome. Nature Genetics, 38(1), 86–92.

    Article  PubMed  CAS  Google Scholar 

  • McLaren, J., & Bryson, S. E. (1987). Review of recent epidemiological studies of mental retardation: prevalence, associated disorders, and etiology. American Journal of Mental Retardation, 92(3), 243–254.

    PubMed  CAS  Google Scholar 

  • Menten, B., et al. (2006). Emerging patterns of cryptic chromosomal imbalance in patients with idiopathic mental retardation and multiple congenital anomalies: a new series of 140 patients and review of published reports. Journal of Medical Genetics, 43(8), 625–633.

    Article  PubMed  CAS  Google Scholar 

  • Miyake, N., et al. (2006). BAC array CGH reveals genomic aberrations in idiopathic mental retardation. American Journal of Medical Genetics. Part A, 140(3), 205–211.

    Article  PubMed  CAS  Google Scholar 

  • Moog, U. (2005). The outcome of diagnostic studies on the etiology of mental retardation: Considerations on the classification of the causes. American Journal of Medical Genetics. Part A, 137(2), 228–231.

    Article  PubMed  Google Scholar 

  • Nannya, Y., et al. (2005). A robust algorithm for copy number detection using high-density oligonucleotide single nucleotide polymorphism genotyping arrays. Cancer Research, 65(14), 6071–6079.

    Article  PubMed  CAS  Google Scholar 

  • Nesslinger, N. J., et al. (1994). Clinical, cytogenetic, and molecular characterization of seven patients with deletions of chromosome 22q13.3. American Journal of Human Genetics, 54(3), 464–472.

    PubMed  CAS  Google Scholar 

  • Patau, K., et al. (1960). Multiple congenital anomaly caused by an extra autosome. Lancet, 1, 790–793.

    Article  PubMed  CAS  Google Scholar 

  • Peiffer, D. A., et al. (2006). High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Research, 16(9), 1136–1148.

    Article  PubMed  CAS  Google Scholar 

  • Pinkel, D., et al. (1998). High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genetics, 20(2), 207–211.

    Article  PubMed  CAS  Google Scholar 

  • Pollack, J. R., et al. (1999). Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genetics, 23(1), 41–46.

    Article  PubMed  CAS  Google Scholar 

  • Potocki, L., et al. (2000). Molecular mechanism for duplication 17p11.2- the homologous recombination reciprocal of the Smith-Magenis microdeletion. Nature Genetics, 24(1), 84–87.

    Article  PubMed  CAS  Google Scholar 

  • Rauch, A., et al. (2006). Diagnostic yield of various genetic approaches in patients with unexplained developmental delay or mental retardation. American Journal of Medical Genetics. Part A, 140(19), 2063–2074.

    Article  PubMed  Google Scholar 

  • Ravnan, J. B., et al. (2006). Subtelomere FISH analysis of 11 688 cases: An evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities. Journal of Medical Genetics, 43(6), 478–489.

    Article  PubMed  CAS  Google Scholar 

  • Raymond, F. L., & Tarpey, P. (2006). The genetics of mental retardation. Human Molecular Genetics, 15 Spec No 2, R110–R116.

    Article  PubMed  CAS  Google Scholar 

  • Redon, R., et al. (2006). Global variation in copy number in the human genome. Nature, 444(7118), 444–454.

    Article  PubMed  CAS  Google Scholar 

  • Rooms, L., et al. (2004). Subtelomeric deletions detected in patients with idiopathic mental retardation using multiplex ligation-dependent probe amplification (MLPA). Human Mutation, 23(1), 17–21.

    Article  PubMed  CAS  Google Scholar 

  • Ropers, H. H., & Hamel, B. C. (2005). X-linked mental retardation. Nature Reviews. Genetics, 6(1), 46–57.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, C., et al. (2006). Array-CGH detection of micro rearrangements in mentally retarded individuals: clinical significance of imbalances present both in affected children and normal parents. Journal of Medical Genetics, 43(2), 180–186.

    Article  PubMed  CAS  Google Scholar 

  • Ruiter, M., et al. (2006). A novel 2.3 Mb microduplication of 12q24.21q24.23 detected by genome-wide tiling-path resolution array comparative genomic hybridization in a girl with syndromic mental retardation. Clinical Dysmorphology, 15(3), 133–137.

    Article  PubMed  Google Scholar 

  • Scambler, P. J., et al. (1992). Velo-cardio-facial syndrome associated with chromosome 22 deletions encompassing the DiGeorge locus. Lancet, 339(8802), 1138–1139.

    Article  PubMed  CAS  Google Scholar 

  • Schoumans, J., et al. (2005). Detection of chromosomal imbalances in children with idiopathic mental retardation by array based comparative genomic hybridisation (array-CGH). Journal of Medical Genetics, 42(9), 699–705.

    Article  PubMed  CAS  Google Scholar 

  • Schouten, J. P., et al. (2002). Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Research, 30(12), e57.

    Article  PubMed  Google Scholar 

  • Sebat, J., et al. (2004). Large-scale copy number polymorphism in the human genome. Science, 305(5683), 525–528.

    Article  PubMed  CAS  Google Scholar 

  • Selzer, R. R., et al. (2005). Analysis of chromosome breakpoints in neuroblastoma at sub-kilobase resolution using fine-tiling oligonucleotide array CGH. Genes, Chromosomes & Cancer, 44(3), 305–319.

    Article  CAS  Google Scholar 

  • Shaffer, L. G., & Bejjani, B. A. (2004). A cytogeneticist’s perspective on genomic microarrays. Human Reproduction Update, 10(3), 221–226.

    Article  PubMed  CAS  Google Scholar 

  • Shaffer, L. G., et al. (2006). Targeted genomic microarray analysis for identification of chromosome abnormalities in 1500 consecutive clinical cases. Jornal de Pediatria, 149(1), 98–102.

    CAS  Google Scholar 

  • Sharp, A. J., et al. (2005). Segmental duplications and copy-number variation in the human genome. American Journal of Human Genetics, 77(1), 78–88.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, A. J., et al. (2006). Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nature Genetics, 38(9), 1038–1042.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, A. J., et al. (2007). Characterization of a recurrent 15q24 microdeletion syndrome. Human Molecular Genetics, 16(5), 567–572.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, C. J., et al. (2004). Comparative genomic hybridisation using a proximal 17p BAC/PAC array detects rearrangements responsible for four genomic disorders. Journal of Medical Genetics, 41(2), 113–119.

    Article  PubMed  CAS  Google Scholar 

  • Shaw-Smith, C., et al. (2004). Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning ­disability/mental retardation and dysmorphic features. Journal of Medical Genetics, 41(4), 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Shaw-Smith, C., et al. (2006). Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability. Nature Genetics, 38(9), 1032–1037.

    Article  PubMed  CAS  Google Scholar 

  • Sismani, C., et al. (2001). Screening for subtelomeric chromosome abnormalities in children with idiopathic mental retardation using multiprobe telomeric FISH and the new MAPH telomeric assay. European Journal of Human Genetics, 9(7), 527–532.

    Article  PubMed  CAS  Google Scholar 

  • Slater, H. R., et al. (2005). High-resolution identification of chromosomal abnormalities using oligonucleotide arrays containing 116, 204 SNPs. American Journal of Human Genetics, 77(5), 709–726.

    Article  PubMed  CAS  Google Scholar 

  • Slavotinek, A., et al. (1999). Monosomy 1p36. Journal of Medical Genetics, 36(9), 657–663.

    PubMed  CAS  Google Scholar 

  • Smeets, D. F. (2004). Historical prospective of human cytogenetics: From microscope to microarray. Clinical Biochemistry, 37(6), 439–446.

    Article  PubMed  CAS  Google Scholar 

  • Smith, A. C., et al. (1986). Interstitial deletion of (17)(p11.2p11.2) in nine patients. American Journal of Medical Genetics, 24(3), 393–414.

    Article  PubMed  CAS  Google Scholar 

  • Snijders, A. M., et al. (2001). Assembly of microarrays for genome-wide measurement of DNA copy number. Nature Genetics, 29(3), 263–264.

    Article  PubMed  CAS  Google Scholar 

  • Solinas-Toldo, S., et al. (1997). Matrix-based comparative genomic hybridization: Biochips to screen for genomic imbalances. Genes, Chromosomes & Cancer, 20(4), 399–407.

    Article  CAS  Google Scholar 

  • Solomon, N. M., et al. (2004). Array comparative genomic hybridisation analysis of boys with X linked hypopituitarism identifies a 3.9 Mb duplicated critical region at Xq27 containing SOX3. Journal of Medical Genetics, 41(9), 669–678.

    Article  PubMed  CAS  Google Scholar 

  • Somerville, M. J., et al. (2005). Severe expressive-language delay related to duplication of the Williams-Beuren locus. The New England Journal of Medicine, 353(16), 1694–1701.

    Article  PubMed  CAS  Google Scholar 

  • Speicher, M. R., et al. (1996). Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nature Genetics, 12(4), 368–375.

    Article  PubMed  CAS  Google Scholar 

  • Stankiewicz, P., & Lupski, J. R. (2002). Molecular-evolutionary mechanisms for genomic disorders. Current Opinion in Genetics & Development, 12(3), 312–319.

    Article  CAS  Google Scholar 

  • Stewart, D. R., et al. (2004). Subtelomeric deletions of chromosome 9q: a novel microdeletion syndrome. American Journal of Medical Genetics. Part A, 128(4), 340–351.

    Google Scholar 

  • Tjio, J. H., & Levan, A. (1956). The chromosome number in man. Hereditas, 42, 1–6.

    Article  Google Scholar 

  • Trask, B. J. (1991). Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends in Genetics, 7(5), 149–154.

    Article  PubMed  CAS  Google Scholar 

  • Tuzun, E., et al. (2005). Fine-scale structural variation of the human genome. Nature Genetics, 37(7), 727–732.

    Article  PubMed  CAS  Google Scholar 

  • Tyson, C., et al. (2005). Submicroscopic deletions and duplications in individuals with intellectual disability detected by array-CGH. American Journal of Medical Genetics. Part A, 139(3), 173–185.

    Article  PubMed  CAS  Google Scholar 

  • van Buggenhout, G., et al. (2004). Mild Wolf-Hirschhorn syndrome: Micro-array CGH analysis of atypical 4p16.3 deletions enables refinement of the genotype-phenotype map. Journal of Medical Genetics, 41(9), 691–698.

    Article  PubMed  CAS  Google Scholar 

  • van den IJssel, P., et al. (2005). Human and mouse oligonucleotide-based array CGH. Nucleic Acids Research, 33(22), e192.

    Article  PubMed  CAS  Google Scholar 

  • Veltman, J. A., et al. (2002). High-throughput analysis of subtelomeric chromosome rearrangements by use of array-based comparative genomic hybridization. American Journal of Human Genetics, 70(5), 1269–1276.

    Article  PubMed  CAS  Google Scholar 

  • Veltman, J. A., et al. (2003). Definition of a critical region on chromosome 18 for congenital aural atresia by arrayCGH. American Journal of Human Genetics, 72(6), 1578–1584.

    Article  PubMed  CAS  Google Scholar 

  • Veltman, J. A., et al. (2004). High resolution profiling of X chromosomal aberrations by array comparative genomic hybridisation. Journal of Medical Genetics, 41(6), 425–432.

    Article  PubMed  CAS  Google Scholar 

  • Vermeesch, J. R., et al. (2005). Molecular karyotyping: Array CGH quality criteria for constitutional genetic diagnosis. The Journal of Histochemistry and Cytochemistry, 53(3), 413–422.

    Article  PubMed  CAS  Google Scholar 

  • Visser, R., et al. (2005). Identification of a 3.0-kb major recombination hotspot in patients with Sotos syndrome who carry a common 1.9-Mb microdeletion. American Journal of Human Genetics, 76(1), 52–67.

    Article  PubMed  CAS  Google Scholar 

  • Vissers, L. E., et al. (2003). Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. American Journal of Human Genetics, 73(6), 1261–1270.

    Article  PubMed  CAS  Google Scholar 

  • Vissers, L. E., et al. (2004). Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nature Genetics, 36(9), 955–957.

    Article  PubMed  CAS  Google Scholar 

  • Vissers, L. E., et al. (2005). Identification of disease genes by whole genome CGH arrays. Human Molecular Genetics, 14 Spec No 2, R215–R223.

    Article  PubMed  Google Scholar 

  • Willatt, L., et al. (2005). 3q29 microdeletion syndrome: clinical and molecular characterization of a new syndrome. American Journal of Human Genetics, 77(1), 154–160.

    Article  PubMed  CAS  Google Scholar 

  • Yu, W., et al. (2003). Development of a comparative genomic hybridization microarray and demonstration of its utility with 25 well-characterized 1p36 deletions. Human Molecular Genetics, 12(17), 2145–2152.

    Article  PubMed  CAS  Google Scholar 

  • Yunis, J. J. (1976). High resolution of human chromosomes. Science, 191(4233), 1268–1270.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, X., et al. (2004). Concurrent analysis of loss of heterozygosity (LOH) and copy number abnormality (CNA) for oral premalignancy progression using the Affymetrix 10K SNP mapping array. Human Genetics, 115(4), 327–330.

    Article  PubMed  CAS  Google Scholar 

  • Zweier, C., et al. (2007). Haploinsufficiency of TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt-Hopkins Syndrome). American Journal of Human Genetics, 80(5), 994–1001.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Netherlands Organization for Health Research and Development (ZON-MW) (D.A.K., J.A.V., and B.B.A.d.V.), and the Hersenstichting Nederland (B.B.A.d.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert B. A. de Vries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Koolen, D.A., Veltman, J.A., de Vries, B.B.A. (2011). Diagnostic Genome Profiling in Mental Retardation. In: Clelland, J. (eds) Genomics, Proteomics, and the Nervous System. Advances in Neurobiology, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7197-5_7

Download citation

Publish with us

Policies and ethics