Gene Expression and Signal Transduction Cascades Mediating Estrogen Effects on Memory

  • Kristina K. Aenlle
  • Thomas C. Foster
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 2)


Estrogen treatment has been shown to influence memory function and protect against age-related cognitive decline. However, the mechanism through which estrogen acts to regulate these processes is not well understood. Research in this area has focused on the hippocampus and other limbic structures, due to their well-established role in memory processes. In particular, the impact of estrogen on Ca2+-dependent synaptic plasticity is of interest, since synaptic plasticity provides a potential memory mechanism. Estrogen acts through rapid Ca2+ signaling cascades to modify induction of synaptic plasticity and control translational mechanisms via the phosphorylation state of transcription factors, leading to structural modifications. Estrogen can also influence transcription through estrogen receptor (e.g., ERα and ERβ) interactions with estrogen response elements located on DNA. Thus, in addition to rapid effects on synaptic function, transcriptional mechanisms lead to longer term trophic and neuroprotective benefits that may maintain hippocampal health in the face of aging.


Estrogen Aging Memory Synaptic plasticity Hippocampus Signal transduction cascade Estrogen receptor 


  1. Adams, M. M., Fink, S. E., Janssen, W. G., Shah, R. A., & Morrison, J. H. (2004). Estrogen modulates synaptic N-methyl-D-aspartate receptor subunit distribution in the aged hippocampus. The Journal of Comparative Neurology, 474, 419–426.PubMedCrossRefGoogle Scholar
  2. Adams, M. M., Fink, S. E., Shah, R. A., Janssen, W. G., Hayashi, S., Milner, T. A., et al. (2002). Estrogen and aging affect the subcellular distribution of estrogen receptor-alpha in the ­hippocampus of female rats. The Journal of Neuroscience, 22, 3608–3614.PubMedGoogle Scholar
  3. Aronica, S. M., Kraus, W. L., & Katzenellenbogen, B. S. (1994). Estrogen action via the cAMP signaling pathway: Stimulation of adenylate cyclase and cAMP-regulated gene transcription. Proceedings of the National Academy of Sciences of the United States of America, 91, 8517–8521.PubMedCrossRefGoogle Scholar
  4. Azcoitia, I., Sierra, A., & Garcia-Segura, L. M. (1999). Localization of estrogen receptor beta-immunoreactivity in astrocytes of the adult rat brain. Glia, 26, 260–267.PubMedCrossRefGoogle Scholar
  5. Barkhem, T., Carlsson, B., Nilsson, Y., Enmark, E., Gustafsson, J., & Nilsson, S. (1998). Differential response of estrogen receptor alpha and estrogen receptor beta to partial estrogen agonists/antagonists. Molecular Pharmacology, 54, 105–112.PubMedGoogle Scholar
  6. Benvenuti, S., Luciani, P., Vannelli, G. B., Gelmini, S., Franceschi, E., Serio, M., et al. (2005). Estrogen and selective estrogen receptor modulators exert neuroprotective effects and ­stimulate the expression of selective Alzheimer’s disease indicator-1, a recently discovered antiapoptotic gene, in human neuroblast long-term cell cultures. The Journal of Clinical Endocrinology and Metabolism, 90, 1775–1782.PubMedCrossRefGoogle Scholar
  7. Bi, R., Foy, M. R., Vouimba, R. M., Thompson, R. F., & Baudry, M. (2001). Cyclic changes in estradiol regulate synaptic plasticity through the MAP kinase pathway. Proceedings of the National Academy of Sciences of the United States of America, 98, 13391–13395.PubMedCrossRefGoogle Scholar
  8. Bjornstrom, L., & Sjoberg, M. (2005). Mechanisms of estrogen receptor signaling: Convergence of genomic and nongenomic actions on target genes. Molecular Endocrinology, 19, 833–842.PubMedCrossRefGoogle Scholar
  9. Blalock, E. M., Chen, K. C., Sharrow, K., Herman, J. P., Porter, N. M., Foster, T. C., et al. (2003). Gene microarrays in hippocampal aging: Statistical profiling identifies novel processes ­correlated with cognitive impairment. The Journal of Neuroscience, 23, 3807–3819.PubMedGoogle Scholar
  10. Blum, S., Moore, A. N., Adams, F., & Dash, P. K. (1999). A mitogen-activated protein kinase cascade in the CA1/CA2 subfield of the dorsal hippocampus is essential for long-term spatial memory. The Journal of Neuroscience, 19, 3535–3544.PubMedGoogle Scholar
  11. Blutstein, T., Devidze, N., Choleris, E., Jasnow, A. M., Pfaff, D. W., & Mong, J. A. (2006). Oestradiol up-regulates glutamine synthetase mRNA and protein expression in the hypothalamus and hippocampus: implications for a role of hormonally responsive glia in amino acid neurotransmission. Journal of Neuroendocrinology, 18, 692–702.PubMedCrossRefGoogle Scholar
  12. Boulware, M. I., Weick, J. P., Becklund, B. R., Kuo, S. P., Groth, R. D., & Mermelstein, P. G. (2005). Estradiol activates group I and II metabotropic glutamate receptor signaling, leading to opposing influences on cAMP response element-binding protein. The Journal of Neuroscience, 25, 5066–5078.PubMedCrossRefGoogle Scholar
  13. Bowman, R. E., Ferguson, D., & Luine, V. N. (2002). Effects of chronic restraint stress and estradiol on open field activity, spatial memory, and monoaminergic neurotransmitters in ovariectomized rats. Neuroscience, 113, 401–410.PubMedCrossRefGoogle Scholar
  14. Brake, W. G., Alves, S. E., Dunlop, J. C., Lee, S. J., Bulloch, K., Allen, P. B., et al. (2001). Novel target sites for estrogen action in the dorsal hippocampus: An examination of synaptic ­proteins. Endocrinology, 142, 1284–1289.PubMedCrossRefGoogle Scholar
  15. Brewer, G. J., Reichensperger, J. D., & Brinton, R. D. (2006). Prevention of age-related dysregulation of calcium dynamics by estrogen in neurons. Neurobiology of Aging, 27, 306–317.PubMedCrossRefGoogle Scholar
  16. Cardona-Gomez, G. P., Trejo, J. L., Fernandez, A. M., & Garcia-Segura, L. M. (2000). Estrogen receptors and insulin-like growth factor-I receptors mediate estrogen-dependent synaptic plasticity. Neuroreport, 11, 1735–1738.PubMedCrossRefGoogle Scholar
  17. Carrer, H. F., Araque, A., & Buno, W. (2003). Estradiol regulates the slow Ca2+-activated K+ current in hippocampal pyramidal neurons. The Journal of Neuroscience, 23, 6338–6344.PubMedGoogle Scholar
  18. Carswell, H. V., Dominiczak, A. F., Garcia-Segura, L. M., Harada, N., Hutchison, J. B., & Macrae, I. M. (2005). Brain aromatase expression after experimental stroke: topography and time course. The Journal of Steroid Biochemistry and Molecular Biology, 96, 89–91.PubMedCrossRefGoogle Scholar
  19. Cattaneo, E., & Maggi, A. (1990). c-fos Induction by estrogen in specific rat brain areas. European Journal of Pharmacology, 188, 153–159.PubMedCrossRefGoogle Scholar
  20. Cavus, I., & Duman, R. S. (2003). Influence of estradiol, stress, and 5-HT2A agonist treatment on brain-derived neurotrophic factor expression in female rats. Biological Psychiatry, 54, 59–69.PubMedCrossRefGoogle Scholar
  21. Chan, S. L., Tammariello, S. P., Estus, S., & Mattson, M. P. (1999). Prostate apoptosis response-4 mediates trophic factor withdrawal-induced apoptosis of hippocampal neurons: Actions prior to mitochondrial dysfunction and caspase activation. Journal of Neurochemistry, 73, 502–512.PubMedCrossRefGoogle Scholar
  22. Chang, L., & Karin, M. (2001). Mammalian MAP kinase signalling cascades. Nature, 410, 37–40.PubMedCrossRefGoogle Scholar
  23. Chen, J. Q., Delannoy, M., Cooke, C., & Yager, J. D. (2004). Mitochondrial localization of ERalpha and ERbeta in human MCF7 cells. American Journal of Physiology. Endocrinology and Metabolism, 286, E1011–E1022.PubMedCrossRefGoogle Scholar
  24. Cyr, M., Thibault, C., Morissette, M., Landry, M., & Di Paolo, T. (2001). Estrogen-like activity of tamoxifen and raloxifene on NMDA receptor binding and expression of its subunits in rat brain. Neuropsychopharmacology, 25, 242–257.PubMedCrossRefGoogle Scholar
  25. Day, J. R, Laping, N. J, Lampert-Etchells, M., Brown, S. A, O’Callaghan, J. P, McNeill, T.H., & Finch, C. E. (1993) Gonadal steroids regulate the expression of glial fibrillary acidic protein in the adult male rat hippocampus. Neuroscience, 55, 435–443.Google Scholar
  26. Del Cerro, S., Garcia-Estrada, J., & Garcia-Segura, L. M. (1995) Neuroactive steroids regulate astroglia morphology in hippocampal cultures from adult rats. Glia, 14, 65–71.Google Scholar
  27. Dominguez-Salazar, E., Shetty, S., & Rissman, E. F. (2006). Rapid neural Fos responses to oestradiol in oestrogen receptor alphabeta double knockout mice. Journal of Neuroendocrinology, 18, 195–202.PubMedCrossRefGoogle Scholar
  28. Dykens, J. A., Simpkins, J. W., Wang, J., & Gordon, K. (2003). Polycyclic phenols, estrogens and neuroprotection: A proposed mitochondrial mechanism. Experimental Gerontology, 38, 101–107.PubMedCrossRefGoogle Scholar
  29. Eberling, J. L., Wu, C., Tong-Turnbeaugh, R., & Jagust, W. J. (2004). Estrogen- and tamoxifen-associated effects on brain structure and function. Neuroimage, 21, 364–371.PubMedCrossRefGoogle Scholar
  30. Espeland, M. A., Rapp, S. R., Shumaker, S. A., Brunner, R., Manson, J. E., Sherwin, B. B., et al. (2004). Conjugated equine estrogens and global cognitive function in postmenopausal women: Women’s Health Initiative Memory Study. JAMA, 291, 2959–2968.PubMedCrossRefGoogle Scholar
  31. Favit, A., Fiore, L., Nicoletti, F., & Canonico, P. L. (1991). Estrogen modulates stimulation of inositol phospholipid hydrolysis by norepinephrine in rat brain slices. Brain Research, 555, 65–69.PubMedCrossRefGoogle Scholar
  32. Ferrini, M., Bisagno, V., Piroli, G., Grillo, C., Deniselle, M. C., & De Nicola, A. F. (2002). Effects of estrogens on choline-acetyltransferase immunoreactivity and GAP-43 mRNA in the forebrain of young and aging male rats. Cellular and Molecular Neurobiology, 22, 289–301.PubMedCrossRefGoogle Scholar
  33. Foster, T. C. (2005). Interaction of rapid signal transduction cascades and gene expression in mediating estrogen effects on memory over the life span. Frontiers in Neuroendocrinology, 26, 51–64.PubMedCrossRefGoogle Scholar
  34. Foy, M. R., Chiaia, N. L., & Teyler, T. J. (1984). Reversal of hippocampal sexual dimorphism by gonadal steroid manipulation. Brain Research, 321, 311–314.PubMedCrossRefGoogle Scholar
  35. Foy, M. R., Xu, J., Xie, X., Brinton, R. D., Thompson, R. F., & Berger, T. W. (1999). 17beta-estradiol enhances NMDA receptor-mediated EPSPs and long-term potentiation. Journal of Neurophysiology, 81, 925–929.PubMedGoogle Scholar
  36. Fugger, H. N., Kumar, A., Lubahn, D. B., Korach, K. S., & Foster, T. C. (2001). Examination of estradiol effects on the rapid estradiol mediated increase in hippocampal synaptic transmission in estrogen receptor alpha knockout mice. Neuroscience Letters, 309, 207–209.PubMedCrossRefGoogle Scholar
  37. Galea, L. A., Spritzer, M. D., Barker, J. M., & Pawluski, J. L. (2006). Gonadal hormone modulation of hippocampal neurogenesis in the adult. Hippocampus, 16, 225–232.PubMedCrossRefGoogle Scholar
  38. Gibbs, R. B. (1998). Levels of trkA and BDNF mRNA, but not NGF mRNA, fluctuate across the estrous cycle and increase in response to acute hormone replacement. Brain Research, 787, 259–268.PubMedCrossRefGoogle Scholar
  39. Gibbs, R. B. (1999). Treatment with estrogen and progesterone affects relative levels of brain-derived neurotrophic factor mRNA and protein in different regions of the adult rat brain. Brain Research, 844, 20–27.PubMedCrossRefGoogle Scholar
  40. Gibbs, R. B., & Aggarwal, P. (1998). Estrogen and basal forebrain cholinergic neurons: ­implications for brain aging and Alzheimer’s disease-related cognitive decline. Hormones and Behavior, 34, 98–111.PubMedCrossRefGoogle Scholar
  41. Gould, E., Woolley, C. S., Frankfurt, M., & McEwen, B. S. (1990). Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. The Journal of Neuroscience, 10, 1286–1291.PubMedGoogle Scholar
  42. Gu, Q., & Moss, R. L. (1996). 17 beta-Estradiol potentiates kainate-induced currents via activation of the cAMP cascade. The Journal of Neuroscience, 16, 3620–3629.PubMedGoogle Scholar
  43. Guzowski, J. F. (2002). Insights into immediate-early gene function in hippocampal memory consolidation using antisense oligonucleotide and fluorescent imaging approaches. Hippocampus, 12, 86–104.PubMedCrossRefGoogle Scholar
  44. Hayashi, S., Ueyama, T., Kajimoto, T., Yagi, K., Kohmura, E., & Saito, N. (2005). Involvement of gamma protein kinase C in estrogen-induced neuroprotection against focal brain ischemia through G protein-coupled estrogen receptor. Journal of Neurochemistry, 93, 883–891.PubMedCrossRefGoogle Scholar
  45. Heikkinen, T., Puolivali, J., Liu, L., Rissanen, A., & Tanila, H. (2002). Effects of ovariectomy and estrogen treatment on learning and hippocampal neurotransmitters in mice. Hormones and Behavior, 41, 22–32.PubMedCrossRefGoogle Scholar
  46. Hruska, R. E., & Pitman, K. T. (1982). Distribution and localization of estrogen-sensitive dopamine receptors in the rat brain. Journal of Neurochemistry, 39, 1418–1423.PubMedCrossRefGoogle Scholar
  47. Improta-Brears, T., Whorton, A. R., Codazzi, F., York, J. D., Meyer, T., & McDonnell, D. P. (1999). Estrogen-induced activation of mitogen-activated protein kinase requires mobilization of intracellular calcium. Proceedings of the National Academy of Sciences of the United States of America, 96, 4686–4691.PubMedCrossRefGoogle Scholar
  48. Jezierski, M. K., & Sohrabji, F. (2001). Neurotrophin expression in the reproductively senescent forebrain is refractory to estrogen stimulation. Neurobiology of Aging, 22, 309–319.PubMedCrossRefGoogle Scholar
  49. Kalita, K., Szymczak, S., & Kaczmarek, L. (2005). Non-nuclear estrogen receptor beta and alpha in the hippocampus of male and female rats. Hippocampus, 15, 404–412.PubMedCrossRefGoogle Scholar
  50. Kurata, K., Takebayashi, M., Kagaya, A., Morinobu, S., & Yamawaki, S. (2001). Effect of beta-estradiol on voltage-gated Ca(2+) channels in rat hippocampal neurons: A comparison with dehydroepiandrosterone. European Journal of Pharmacology, 416, 203–212.PubMedCrossRefGoogle Scholar
  51. Kuroki, Y., Fukushima, K., Kanda, Y., Mizuno, K., & Watanabe, Y. (2000). Putative membrane-bound estrogen receptors possibly stimulate mitogen-activated protein kinase in the rat hippocampus. European Journal of Pharmacology, 400, 205–209.PubMedCrossRefGoogle Scholar
  52. Lee, S. J., Campomanes, C. R., Sikat, P. T., Greenfield, A. T., Allen, P. B., & McEwen, B. S. (2004). Estrogen induces phosphorylation of cyclic AMP response element binding (pCREB) in primary hippocampal cells in a time-dependent manner. Neuroscience, 124, 549–560.PubMedCrossRefGoogle Scholar
  53. Leranth, C., Shanabrough, M., & Redmond, D. E., Jr. (2002). Gonadal hormones are responsible for maintaining the integrity of spine synapses in the CA1 hippocampal subfield of female nonhuman primates. The Journal of Comparative Neurology, 447, 34–42.PubMedCrossRefGoogle Scholar
  54. Lin, B., Kramar, E. A., Bi, X., Brucher, F. A., Gall, C. M., & Lynch, G. (2005). Theta stimulation polymerizes actin in dendritic spines of hippocampus. The Journal of Neuroscience, 25, 2062–2069.PubMedCrossRefGoogle Scholar
  55. Luine, V. N. (1985). Estradiol increases choline acetyltransferase activity in specific basal forebrain nuclei and projection areas of female rats. Experimental Neurology, 89, 484–490.PubMedCrossRefGoogle Scholar
  56. Mattson, M. P., Robinson, N., & Guo, Q. (1997). Estrogens stabilize mitochondrial function and protect neural cells against the pro-apoptotic action of mutant presenilin-1. Neuroreport, 8, 3817–3821.PubMedCrossRefGoogle Scholar
  57. McCarthy, J. B., Barker-Gibb, A. L., Alves, S. E., & Milner, T. A. (2002). TrkA immunoreactive astrocytes in dendritic fields of the hippocampal formation across estrous. Glia, 38, 36–44.PubMedCrossRefGoogle Scholar
  58. McCullough, L. D., Blizzard, K., Simpson, E. R., Oz, O. K., & Hurn, P. D. (2003). Aromatase cytochrome P450 and extragonadal estrogen play a role in ischemic neuroprotection. The Journal of Neuroscience, 23, 8701–8705.PubMedGoogle Scholar
  59. McEwen, B. (2002). Estrogen actions throughout the brain. Recent Progress in Hormone Research, 57, 357–384.PubMedCrossRefGoogle Scholar
  60. McEwen, B. S., Tanapat, P., & Weiland, N. G. (1999). Inhibition of dendritic spine induction on hippocampal CA1 pyramidal neurons by a nonsteroidal estrogen antagonist in female rats. Endocrinology, 140, 1044–1047.PubMedCrossRefGoogle Scholar
  61. McQueen, J. K., Dow, R. C., & Fink, G. (1992) Gonadal steroids regulate number of astrocytes immunostained for glial fibrillary acidic protein in mouse hippocampus. Molecular and Cellular Neurosciences, 3, 482–486.Google Scholar
  62. Mendez, P., Wandosell, F., & Garcia-Segura, L. M. (2006). Cross-talk between estrogen receptors and insulin-like growth factor-I receptor in the brain: Cellular and molecular mechanisms. Frontiers in Neuroendocrinology, 27, 391–403.PubMedCrossRefGoogle Scholar
  63. Mermelstein, P. G., Becker, J. B., & Surmeier, D. J. (1996). Estradiol reduces calcium currents in rat neostriatal neurons via a membrane receptor. The Journal of Neuroscience, 16, 595–604.PubMedGoogle Scholar
  64. Milner, T. A., Ayoola, K., Drake, C. T., Herrick, S. P., Tabori, N. E., McEwen, B. S., et al. (2005). Ultrastructural localization of estrogen receptor beta immunoreactivity in the rat hippocampal formation. The Journal of Comparative Neurology, 491, 81–95.PubMedCrossRefGoogle Scholar
  65. Milner, T. A., McEwen, B. S., Hayashi, S., Li, C. J., Reagan, L. P., & Alves, S. E. (2001). Ultrastructural evidence that hippocampal alpha estrogen receptors are located at extranuclear sites. The Journal of Comparative Neurology, 429, 355–371.PubMedCrossRefGoogle Scholar
  66. Mitra, S. W., Hoskin, E., Yudkovitz, J., Pear, L., Wilkinson, H. A., Hayashi, S., et al. (2003). Immunolocalization of estrogen receptor beta in the mouse brain: comparison with estrogen receptor alpha. Endocrinology, 144, 2055–2067.PubMedCrossRefGoogle Scholar
  67. Murphy, D. D., & Segal, M. (1997). Morphological plasticity of dendritic spines in central neurons is mediated by activation of cAMP response element binding protein. Proceedings of the National Academy of Sciences of the United States of America, 94, 1482–1487.PubMedCrossRefGoogle Scholar
  68. Nguyen, P. V., & Woo, N. H. (2003). Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases. Progress in Neurobiology, 71, 401–437.PubMedCrossRefGoogle Scholar
  69. Nishio, M., Kuroki, Y., & Watanabe, Y. (2004). Subcellular localization of estrogen receptor beta in mouse hippocampus. Neuroscience Letters, 355, 109–112.PubMedCrossRefGoogle Scholar
  70. Nishizuka, M., & Arai, Y. (1982). Synapse formation in response to estrogen in the medial amygdala developing in the eye. Proceedings of the National Academy of Sciences of the United States of America, 79, 7024–7026.PubMedCrossRefGoogle Scholar
  71. Osterlund, M. K., & Hurd, Y. L. (2001). Estrogen receptors in the human forebrain and the relation to neuropsychiatric disorders. Progress in Neurobiology, 64, 251–267.PubMedCrossRefGoogle Scholar
  72. Paech, K., Webb, P., Kuiper, G. G., Nilsson, S., Gustafsson, J., Kushner, P. J., et al. (1997). Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science, 277, 1508–1510.PubMedCrossRefGoogle Scholar
  73. Pang, P. T., & Lu, B. (2004). Regulation of late-phase LTP and long-term memory in normal and aging hippocampus: Role of secreted proteins tPA and BDNF. Ageing Research Reviews, 3, 407–430.PubMedCrossRefGoogle Scholar
  74. Parducz, A., Hajszan, T., Maclusky, N. J., Hoyk, Z., Csakvari, E., Kurunczi, A., et al. (2006). Synaptic remodeling induced by gonadal hormones: Neuronal plasticity as a mediator of neuroendocrine and behavioral responses to steroids. Neuroscience, 138, 977–985.PubMedCrossRefGoogle Scholar
  75. Patrone, C., Pollio, G., Vegeto, E., Enmark, E., de Curtis, I., Gustafsson, J. A., et al. (2000). Estradiol induces differential neuronal phenotypes by activating estrogen receptor alpha or beta. Endocrinology, 141, 1839–1845.PubMedCrossRefGoogle Scholar
  76. Pfaff, D., & Keiner, M. (1973). Atlas of estradiol-concentrating cells in the central nervous system of the female rat. The Journal of Comparative Neurology, 151, 121–158.PubMedCrossRefGoogle Scholar
  77. Prange-Kiel, J., & Rune, G. M. (2006). Direct and indirect effects of estrogen on rat hippocampus. Neuroscience, 138, 765–772.PubMedCrossRefGoogle Scholar
  78. Prolla, T. A. (2002). DNA microarray analysis of the aging brain. Chemical Senses, 27, 299–306.PubMedCrossRefGoogle Scholar
  79. Ramirez, V. D., & Zheng, J. (1996). Membrane sex-steroid receptors in the brain. Frontiers in Neuroendocrinology, 17, 402–439.PubMedCrossRefGoogle Scholar
  80. Revankar, C. M., Cimino, D. F., Sklar, L. A., Arterburn, J. B., & Prossnitz, E. R. (2005). A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science, 307, 1625–1630.PubMedCrossRefGoogle Scholar
  81. Rodriguez-Calvo, R., Jove, M., Coll, T., Camins, A., Sanchez, R. M., Alegret, M., et al. (2006). PGC-1beta down-regulation is associated with reduced ERRalpha activity and MCAD expression in skeletal muscle of senescence-accelerated mice. The Journals of Gerontology. Series A: Biological Sciences and Medical Sciences, 61, 773–780.CrossRefGoogle Scholar
  82. Romeo, R. D., McCarthy, J. B., Wang, A., Milner, T. A., & McEwen, B. S. (2005). Sex differences in hippocampal estradiol-induced N-methyl-D-aspartic acid binding and ultrastructural localization of estrogen receptor-alpha. Neuroendocrinology, 81, 391–399.PubMedCrossRefGoogle Scholar
  83. Rudick, C. N., & Woolley, C. S. (2003). Selective estrogen receptor modulators regulate ­phasic activation of hippocampal CA1 pyramidal cells by estrogen. Endocrinology, 144, 179–187.PubMedCrossRefGoogle Scholar
  84. Sasano, H., Takashashi, K., Satoh, F., Nagura, H., & Harada, N. (1998). Aromatase in the human central nervous system. Clinical Endocrinology, 48, 325–329.PubMedCrossRefGoogle Scholar
  85. Sawai, T., Bernier, F., Fukushima, T., Hashimoto, T., Ogura, H., & Nishizawa, Y. (2002). Estrogen induces a rapid increase of calcium-calmodulin-dependent protein kinase II activity in the hippocampus. Brain Research, 950, 308–311.PubMedCrossRefGoogle Scholar
  86. Scharfman, H. E., & Maclusky, N. J. (2006). Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: Complexity of steroid hormone-growth factor interactions in the adult CNS. Frontiers in Neuroendocrinology, 27, 415–435.PubMedCrossRefGoogle Scholar
  87. Segal, M., & Murphy, D. (2001). Estradiol induces formation of dendritic spines in hippocampal neurons: Functional correlates. Hormones and Behavior, 40, 156–159.PubMedCrossRefGoogle Scholar
  88. Selcher, J. C., Atkins, C. M., Trzaskos, J. M., Paylor, R., & Sweatt, J. D. (1999). A necessity for MAP kinase activation in mammalian spatial learning. Learning & Memory, 6, 478–490.CrossRefGoogle Scholar
  89. Selcher, J. C., Weeber, E. J., Varga, A. W., Sweatt, J. D., & Swank, M. (2002). Protein kinase signal transduction cascades in mammalian associative conditioning. The Neuroscientist, 8, 122–131.PubMedCrossRefGoogle Scholar
  90. Setalo, G., Jr., Singh, M., Guan, X., & Toran-Allerand, C. D. (2002). Estradiol-induced phosphorylation of ERK1/2 in explants of the mouse cerebral cortex: the roles of heat shock protein 90 (Hsp90) and MEK2. Journal of Neurobiology, 50, 1–12.PubMedCrossRefGoogle Scholar
  91. Shah, R. D., Anderson, K. L., Rapoport, M., & Ferreira, A. (2003). Estrogen-induced changes in the microtubular system correlate with a decreased susceptibility of aging neurons to beta amyloid neurotoxicity. Molecular and Cellular Neurosciences, 24, 503–516.PubMedCrossRefGoogle Scholar
  92. Sharrow, K. M., Kumar, A., & Foster, T. C. (2002). Calcineurin as a potential contributor in estradiol regulation of hippocampal synaptic function. Neuroscience, 113, 89–97.PubMedCrossRefGoogle Scholar
  93. Sherwin, B. B. (2005). Estrogen and memory in women: How can we reconcile the findings? Hormones and Behavior, 47, 371–375.PubMedCrossRefGoogle Scholar
  94. Shingo, A. S., & Kito, S. (2005). Estradiol induces PKA activation through the putative membrane receptor in the living hippocampal neuron. Journal of Neural Transmission, 112, 1469–1473.PubMedCrossRefGoogle Scholar
  95. Shingo, A. S., & Kito, S. (2002). Estrogen induces elevation of cAMP-dependent protein kinase activity in immortalized hippocampal neurons: imaging in living cells. Journal of Neural Transmission, 109, 171–174.PubMedCrossRefGoogle Scholar
  96. Shors, T. J., Chua, C., & Falduto, J. (2001). Sex differences and opposite effects of stress on dendritic spine density in the male versus female hippocampus. The Journal of Neuroscience, 21, 6292–6297.PubMedGoogle Scholar
  97. Shughrue, P. J., Lane, M. V., & Merchenthaler, I. (1997). Comparative distribution of estrogen receptor-alpha and -beta mRNA in the rat central nervous system. The Journal of Comparative Neurology, 388, 507–525.PubMedCrossRefGoogle Scholar
  98. Singh, M., Meyer, E. M., & Simpkins, J. W. (1995). The effect of ovariectomy and estradiol replacement on brain-derived neurotrophic factor messenger ribonucleic acid expression in cortical and hippocampal brain regions of female Sprague-Dawley rats. Endocrinology, 136, 2320–2324.PubMedCrossRefGoogle Scholar
  99. Singh, M., Setalo, G., Jr., Guan, X., Warren, M., & Toran-Allerand, C. D. (1999). Estrogen-induced activation of mitogen-activated protein kinase in cerebral cortical explants: convergence of estrogen and neurotrophin signaling pathways. The Journal of Neuroscience, 19, 1179–1188.PubMedGoogle Scholar
  100. Sohrabji, F., Miranda, R. C., & Toran-Allerand, C. D. (1995). Identification of a putative estrogen response element in the gene encoding brain-derived neurotrophic factor. Proceedings of the National Academy of Sciences of the United States of America, 92, 11110–11114.PubMedCrossRefGoogle Scholar
  101. Stoltzner, S. E., Berchtold, N. C., Cotman, C. W., & Pike, C. J. (2001). Estrogen regulates bcl-x expression in rat hippocampus. Neuroreport, 12, 2797–2800.PubMedCrossRefGoogle Scholar
  102. Szymczak, S., Kalita, K., Jaworski, J., Mioduszewska, B., Savonenko, A., Markowska, A., et al. (2006). Increased estrogen receptor beta expression correlates with decreased spine formation in the rat hippocampus. Hippocampus, 16, 453–463.PubMedCrossRefGoogle Scholar
  103. Tanabe, N., Kimoto, T., & Kawato, S. (2006). Rapid Ca2+ signaling induced by Bisphenol A in cultured rat hippocampal neurons. Neuro Endocrinology Letters, 27, 97–104.PubMedGoogle Scholar
  104. Tanapat, P., Hastings, N. B., Reeves, A. J., & Gould, E. (1999). Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. The Journal of Neuroscience, 19, 5792–5801.PubMedGoogle Scholar
  105. Vanacker, J. M., Pettersson, K., Gustafsson, J. A., & Laudet, V. (1999). Transcriptional targets shared by estrogen receptor- related receptors (ERRs) and estrogen receptor (ER) alpha, but not by ERbeta. The EMBO Journal, 18, 4270–4279.PubMedCrossRefGoogle Scholar
  106. Veiga, S., Azcoitia, I., & Garcia-Segura, L. M. (2005). Extragonadal synthesis of estradiol is protective against kainic acid excitotoxic damage to the hippocampus. Neuroreport, 16, 1599–1603.PubMedCrossRefGoogle Scholar
  107. Wade, C. B., & Dorsa, D. M. (2003). Estrogen activation of cyclic adenosine 5′-monophosphate response element-mediated transcription requires the extracellularly regulated kinase/mitogen-activated protein kinase pathway. Endocrinology, 144, 832–838.PubMedCrossRefGoogle Scholar
  108. Watters, J. J., Campbell, J. S., Cunningham, M. J., Krebs, E. G., & Dorsa, D. M. (1997). Rapid membrane effects of steroids in neuroblastoma cells: effects of estrogen on mitogen activated protein kinase signalling cascade and c-fos immediate early gene transcription. Endocrinology, 138, 4030–4033.PubMedCrossRefGoogle Scholar
  109. Weiland, N. G. (1992). Estradiol selectively regulates agonist binding sites on the N-methyl-D-aspartate receptor complex in the CA1 region of the hippocampus. Endocrinology, 131, 662–668.PubMedCrossRefGoogle Scholar
  110. Weiland, N. G., Orikasa, C., Hayashi, S., & McEwen, B. S. (1997). Distribution and hormone regulation of estrogen receptor immunoreactive cells in the hippocampus of male and female rats. The Journal of Comparative Neurology, 388, 603–612.PubMedCrossRefGoogle Scholar
  111. Wilson, M. E., Rosewell, K. L., Kashon, M. L., Shughrue, P. J., Merchenthaler, I., & Wise, P. M. (2002). Age differentially influences estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) gene expression in specific regions of the rat brain. Mechanisms of Ageing and Development, 123, 593–601.PubMedCrossRefGoogle Scholar
  112. Winder, D. G., & Sweatt, J. D. (2001). Roles of serine/threonine phosphatases in hippocampal synaptic plasticity. Nature Reviews. Neuroscience, 2, 461–474.PubMedCrossRefGoogle Scholar
  113. Wise, P. M., Dubal, D. B., Rau, S. W., Brown, C. M., & Suzuki, S. (2005). Are estrogens protective or risk factors in brain injury and neurodegeneration? Reevaluation after the Women’s health initiative. Endocrine Reviews, 26, 308–312.PubMedCrossRefGoogle Scholar
  114. Wong, M., & Moss, R. L. (1992). Long-term and short-term electrophysiological effects of estrogen on the synaptic properties of hippocampal CA1 neurons. The Journal of Neuroscience, 12, 3217–3225.PubMedGoogle Scholar
  115. Woolley, C. S., Gould, E., Frankfurt, M., & McEwen, B. S. (1990). Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. The Journal of Neuroscience, 10, 4035–4039.PubMedGoogle Scholar
  116. Woolley, C. S., & McEwen, B. S. (1994). Estradiol regulates hippocampal dendritic spine density via an N-methyl-D-aspartate receptor-dependent mechanism. The Journal of Neuroscience, 14, 7680–7687.PubMedGoogle Scholar
  117. Wu, T. W., Wang, J. M., Chen, S., & Brinton, R. D. (2005). 17Beta-estradiol induced Ca2+ influx via L-type calcium channels activates the Src/ERK/cyclic-AMP response element binding protein signal pathway and BCL-2 expression in rat hippocampal neurons: a potential ­initiation mechanism for estrogen-induced neuroprotection. Neuroscience, 135, 59–72.PubMedCrossRefGoogle Scholar
  118. Xu, X., & Zhang, Z. (2006). Effects of estradiol benzoate on learning-memory behavior and synaptic structure in ovariectomized mice. Life Sciences, 79, 1553–1560.PubMedCrossRefGoogle Scholar
  119. Yalcin, A., Kanit, L., Durmaz, G., Sargin, S., Terek, C. H., & Tanyolac, B. (2005) Altered level of apurinic/apyrimidinic endonuclease/redox factor-1 (APE/REF-1) mRNA in the hippocampus of ovariectomized rats treated by raloxifene against kainic acid. Cilinical and Experimental Pharmacology and Physiology, 32, 611–614.Google Scholar
  120. Zhao, L., Chen, S., Ming Wang, J., & Brinton, R. D. (2005). 17beta-estradiol induces Ca2+ influx, dendritic and nuclear Ca2+ rise and subsequent cyclic AMP response element-binding protein activation in hippocampal neurons: a potential initiation mechanism for estrogen neurotrophism. Neuroscience, 132, 299–311.PubMedCrossRefGoogle Scholar
  121. Zhao, L., O’Neill, K., & Diaz Brinton, R. (2005). Selective estrogen receptor modulators (SERMs) for the brain: current status and remaining challenges for developing NeuroSERMs. Brain Research. Brain Research Reviews, 49, 472–493.PubMedCrossRefGoogle Scholar
  122. Zhou, J., Zhang, H., Cohen, R. S., & Pandey, S. C. (2005). Effects of estrogen treatment on expression of brain-derived neurotrophic factor and cAMP response element-binding protein expression and phosphorylation in rat amygdaloid and hippocampal structures. Neuroendocrinology, 81, 294–310.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Neuroscience, McKnight Brain InstituteUniversity of FloridaGainesvilleUSA

Personalised recommendations