Skip to main content

Comparative Proteomic Analysis as a Method to Investigate Inflammatory and Neuropathic Pain

  • Chapter
  • First Online:
Genomics, Proteomics, and the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 2))

  • 973 Accesses

Abstract

Patients suffering from pathological pain due to neuropathy or chronic inflammation are dependent on treatment with efficient and highly specific drugs. Although a number of analgesics are available many patients cannot be adequately treated because of lacking efficacy or severe side effects. The pain hypersensitivity in inflammatory and neuropathic pain is associated with changes of protein expression in the CNS which are not completely clarified at the moment. To develop novel treatment strategies it is necessary to elucidate the mechanisms of both pain states, and to find proteins that are specifically regulated in either neuropathic or inflammatory pain and that may become drug targets.

Proteomics by 2D-gel electrophoresis combined with MALDI-TOF mass spectrometry might help identifying regulated proteins in the nervous system in inflammatory or neuropathic pain models and therefore facilitate the development of novel analgesics. In these chapter a number of proteomic approaches in the field of inflammatory pain and nerve injury are reviewed which might provide starting points for further research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCI:

chronic constriction injury

IEF:

isoelectric focusing

IPG:

immobilized pH gradient

MALDI-TOF MS:

matrix-assisted laser desorption ionization time-of-flight mass spectrometry

MW:

molecular weight

NC:

nerve crush

SNI:

spared nerve injury

SNL:

spinal nerve ligation

References

  • Alzate, O., Hussain, S. R., Goettl, V. M., Tewari, A. K., Madiai, F., Stephens, R. L., Jr., et al. (2004). Proteomic identification of brainstem cytosolic proteins in a neuropathic pain model. Brain Research. Molecular Brain Research, 128, 193–200.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, T. E. (1982). A controlled pneumatic technique for experimental spinal cord contusion. Journal of Neuroscience Methods, 6, 327–333.

    Article  PubMed  CAS  Google Scholar 

  • Arimura, N., Menager, C., Fukata, Y., & Kaibuchi, K. (2004). Role of CRMP-2 in neuronal polarity. Journal of Neurobiology, 58, 34–47.

    Article  PubMed  CAS  Google Scholar 

  • Beiche, F., Scheuerer, S., Brune, K., Geisslinger, G., & Goppelt-Struebe, M. (1996). Up-regulation of cyclooxygenase-2 mRNA in the rat spinal cord following peripheral inflammation. FEBS Letters, 390, 165–169.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, A. D., Chastain, K. M., & Hulsebosch, C. E. (2000). Alleviation of mechanical and thermal allodynia by CGRP(8-37) in a rodent model of chronic central pain. Pain, 86, 163–175.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, G. J., & Xie, Y. K. (1988). A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain, 33, 87–107.

    Article  PubMed  CAS  Google Scholar 

  • Boyles, J. K., Notterpek, L. M., & Anderson, L. J. (1990). Accumulation of apolipoproteins in the regenerating and remyelinating mammalian peripheral nerve. Identification of apolipoprotein D, apolipoprotein A-IV, apolipoprotein E, and apolipoprotein A-I. The Journal of Biological Chemistry, 265, 17805–17815.

    PubMed  CAS  Google Scholar 

  • Burre, J., Beckhaus, T., Corvey, C., Karas, M., Zimmermann, H., & Volknandt, W. (2006). Synaptic vesicle proteins under conditions of rest and activation: analysis by 2-D difference gel electrophoresis. Electrophoresis, 27, 3488–3496.

    Article  PubMed  CAS  Google Scholar 

  • Campbell, J. N., & Meyer, R. A. (2006). Mechanisms of neuropathic pain. Neuron, 52, 77–92.

    Article  PubMed  CAS  Google Scholar 

  • Chen, H., Lamer, T. J., Rho, R. H., Marshall, K. A., Sitzman, B. T., Ghazi, S. M., et al. (2004). Contemporary management of neuropathic pain for the primary care physician. Mayo Clinic Proceedings, 79, 1533–1545.

    Article  PubMed  Google Scholar 

  • Choi, Y., Yoon, Y. W., Na, H. S., Kim, S. H., & Chung, J. M. (1994). Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain, 59, 369–376.

    Article  PubMed  CAS  Google Scholar 

  • Choudhary, J., & Grant, S. G. (2004). Proteomics in postgenomic neuroscience: the end of the beginning. Nature Neuroscience, 7, 440–445.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, M. D., Everhart, A. W., Pickelman, J. T., & Hulsebosch, C. E. (1996). Mechanical and thermal allodynia in chronic central pain following spinal cord injury. Pain, 68, 97–107.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, M. D., & Hulsebosch, C. E. (1997). Chronic central pain after spinal cord injury. Journal of Neurotrauma, 14, 517–537.

    Article  PubMed  CAS  Google Scholar 

  • Costigan, M., Mannion, R. J., Kendall, G., Lewis, S. E., Campagna, J. A., Coggeshall, R. E., et al. (1998). Heat shock protein 27: developmental regulation and expression after peripheral nerve injury. The Journal of Neuroscience, 18, 5891–5900.

    PubMed  CAS  Google Scholar 

  • Dubner, R. (1994). Methods of assessing pain in animals. In P. D. Wall & R. Melzack (Eds.), Textbook of pain (pp. 293–302). Edinburgh: Churchill Livingston.

    Google Scholar 

  • Dubner, R., & Ren, K. E. (1999). Assessing transient and persistent pain in animals. In P. D. Wall & R. Melzack (Eds.), Textbook of pain (pp. 359–369). Edinburgh: Churchill Livingston.

    Google Scholar 

  • Dubner, R., & Ruda, M. A. (1992). Activity-dependent neuronal plasticity following tissue injury and inflammation. Trends in Neurosciences, 15, 96–103.

    Article  PubMed  CAS  Google Scholar 

  • Fabrizi, G. M., Cavallaro, T., Angiari, C., Cabrini, I., Taioli, F., Malerba, G., et al. (2006). Charcot-Marie-Tooth disease type 2E, a disorder of the cytoskeleton. Brain, 130(Pt 2), 394–403.

    PubMed  Google Scholar 

  • Feasson, L., Stockholm, D., Freyssenet, D., Richard, I., Duguez, S., Beckmann, J. S., et al. (2002). Molecular adaptations of neuromuscular disease-associated proteins in response to eccentric exercise in human skeletal muscle. Journal de Physiologie, 543, 297–306.

    Article  CAS  Google Scholar 

  • George, A., Marziniak, M., Schafers, M., Toyka, K. V., & Sommer, C. (2000). Thalidomide treatment in chronic constrictive neuropathy decreases endoneurial tumor necrosis factor-alpha, increases interleukin-10 and has long-term effects on spinal cord dorsal horn met-enkephalin. Pain, 88, 267–275.

    Article  PubMed  CAS  Google Scholar 

  • Gordh, T., Chu, H., & Sharma, H. S. (2006). Spinal nerve lesion alters blood-spinal cord barrier function and activates astrocytes in the rat. Pain, 124, 211–221.

    Article  PubMed  Google Scholar 

  • Gorg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R., et al. (2000). The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 21, 1037–1053.

    Article  PubMed  CAS  Google Scholar 

  • Gorg, A., Weiss, W., & Dunn, M. J. (2004). Current two-dimensional electrophoresis technology for proteomics. Proteomics, 4, 3665–3685.

    Article  PubMed  Google Scholar 

  • Granville, D. J., & Gottlieb, R. A. (2003). The mitochondrial voltage-dependent anion channel (VDAC) as a therapeutic target for initiating cell death. Current Medicinal Chemistry, 10, 1527–1533.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg, J., McKeever, P. E., & Balentine, J. D. (1978). Lysosomal activity in experimental spinal cord trauma: an ultrastructural cytochemical evaluation. Surgical Neurology, 9, 361–364.

    PubMed  CAS  Google Scholar 

  • Gruber, C. W., Cemazar, M., Heras, B., Martin, J. L., & Craik, D. J. (2006). Protein disulfide isomerase: the structure of oxidative folding. Trends in Biochemical Sciences, 31, 455–464.

    Article  PubMed  CAS  Google Scholar 

  • Hansson, P. T., & Dickenson, A. H. (2005). Pharmacological treatment of peripheral neuropathic pain conditions based on shared commonalities despite multiple etiologies. Pain, 113, 251–254.

    Article  PubMed  Google Scholar 

  • Ignatius, M. J., Gebicke-Harter, P. J., Skene, J. H., Schilling, J. W., Weisgraber, K. H., Mahley, R. W., et al. (1986). Expression of apolipoprotein E during nerve degeneration and regeneration. Proceedings of the National Academy of Sciences of the United States of America, 83, 1125–1129.

    Article  PubMed  CAS  Google Scholar 

  • Ji, R. R., & Woolf, C. J. (2001). Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiology of Disease, 8, 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Ji, R. R., Zhang, X., Wiesenfeld-Hallin, Z., & Hokfelt, T. (1994). Expression of neuropeptide Y and neuropeptide Y (Y1) receptor mRNA in rat spinal cord and dorsal root ganglia following peripheral tissue inflammation. The Journal of Neuroscience, 14, 6423–6434.

    PubMed  CAS  Google Scholar 

  • Ji, R. R., Zhang, X., Zhang, Q., Dagerlind, A., Nilsson, S., Wiesenfeld-Hallin, Z., et al. (1995). Central and peripheral expression of galanin in response to inflammation. Neuroscience, 68, 563–576.

    Article  PubMed  CAS  Google Scholar 

  • Jimenez, C. R., Stam, F. J., Li, K. W., Gouwenberg, Y., Hornshaw, M. P., De Winter, F., et al. (2005). Proteomics of the injured rat sciatic nerve reveals protein expression dynamics during regeneration. Molecular & Cellular Proteomics, 4, 120–132.

    Article  CAS  Google Scholar 

  • Kang, S. K., So, H. H., Moon, Y. S., & Kim, C. H. (2006). Proteomic analysis of injured spinal cord tissue proteins using 2-DE and MALDI-TOF MS. Proteomics, 6, 2797–2812.

    Article  PubMed  CAS  Google Scholar 

  • Katano, T., Mabuchi, T., Okuda-Ashitaka, E., Inagaki, N., Kinumi, T., & Ito, S. (2006). Proteomic identification of a novel isoform of collapsin response mediator protein-2 in spinal nerves peripheral to dorsal root ganglia. Proteomics, 6, 6085–6094.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. H., & Chung, J. M. (1992). An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain, 50, 355–363.

    Article  PubMed  CAS  Google Scholar 

  • Kingery, W. S. (1997). A critical review of controlled clinical trials for peripheral neuropathic pain and complex regional pain syndromes. Pain, 73, 123–139.

    Article  PubMed  CAS  Google Scholar 

  • Klivenyi, P., Ferrante, R. J., Matthews, R. T., Bogdanov, M. B., Klein, A. M., Andreassen, O. A., et al. (1999). Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Natural Medicines, 5, 347–350.

    Article  CAS  Google Scholar 

  • Koltzenburg, M. (1998). Painful neuropathies. Current Opinion in Neurology, 11, 515–521.

    Article  PubMed  CAS  Google Scholar 

  • Komori, N., Takemori, N., Kim, H. K., Singh, A., Hwang, S. H., Foreman, R. D., et al. (2007). Proteomics study of neuropathic and nonneuropathic dorsal root ganglia: altered protein regulation following segmental spinal nerve ligation injury. Physiological Genomics, 29, 215–230.

    Article  PubMed  CAS  Google Scholar 

  • Kretz, A., Schmeer, C., Tausch, S., & Isenmann, S. (2006). Simvastatin promotes heat shock protein 27 expression and Akt activation in the rat retina and protects axotomized retinal ­ganglion cells in vivo. Neurobiology of Disease, 21, 421–430.

    Article  PubMed  CAS  Google Scholar 

  • Kunz, S., Niederberger, E., Ehnert, C., Coste, O., Pfenninger, A., Kruip, J., et al. (2004). The calpain inhibitor MDL 28170 prevents inflammation-induced neurofilament light chain breakdown in the spinal cord and reduces thermal hyperalgesia. Pain, 110, 409–418.

    Article  PubMed  CAS  Google Scholar 

  • Kunz, S., Tegeder, I., Coste, O., Marian, C., Pfenninger, A., Corvey, C., et al. (2005). Comparative proteomic analysis of the rat spinal cord in inflammatory and neuropathic pain models. Neuroscience Letters, 381, 289–293.

    Article  PubMed  CAS  Google Scholar 

  • Latchman, D. S. (2005). HSP27 and cell survival in neurones. International Journal of Hyperthermia, 21, 393–402.

    Article  PubMed  CAS  Google Scholar 

  • Le Bars, D., Gozariu, M., & Cadden, S. W. (2001). Animal models of nociception. Pharmacological Reviews, 53, 597–652.

    PubMed  Google Scholar 

  • Lee, S. C., Yoon, T. G., Yoo, Y. I., Bang, Y. J., Kim, H. Y., Jeoung, D. I., et al. (2003). Analysis of spinal cord proteome in the rats with mechanical allodynia after the spinal nerve injury. Biotechnological Letters, 25, 2071–2078.

    Article  CAS  Google Scholar 

  • MacRae, T. H. (2000). Structure and function of small heat shock/alpha-crystallin proteins: established concepts and emerging ideas. Cellular and Molecular Life Sciences, 57, 899–913.

    Article  PubMed  CAS  Google Scholar 

  • Mannion, R. J., Costigan, M., Decosterd, I., Amaya, F., Ma, Q. P., Holstege, J. C., et al. (1999). Neurotrophins: peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proceedings of the National Academy of Sciences of the United States of America, 96, 9385–9390.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, H., & Komori, N. (1999). Protein identification on two-dimensional gels archived nearly two decades ago by in-gel digestion and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Analytical Biochemistry, 270, 176–179.

    Article  PubMed  CAS  Google Scholar 

  • McCarson, K. E., & Krause, J. E. (1994). NK-1 and NK-3 type tachykinin receptor mRNA expression in the rat spinal cord dorsal horn is increased during adjuvant or formalin-induced ­nociception. The Journal of Neuroscience, 14, 712–720.

    PubMed  CAS  Google Scholar 

  • Meller, S. T., & Gebhart, G. F. (1997). Intraplantar zymosan as a reliable, quantifiable model of thermal and mechanical hyperalgesia in the rat. European Journal of Pain, 1, 43–52.

    Article  PubMed  CAS  Google Scholar 

  • Niederberger, E., Tegeder, I., Vetter, G., Schmidtko, A., Schmidt, H., Euchenhofer, C., et al. (2001). Celecoxib loses its anti-inflammatory efficacy at high doses through activation of NF-kappaB. The FASEB Journal, 15, 1622–1624.

    CAS  Google Scholar 

  • O’Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. The Journal of Biological Chemistry, 250, 4007–4021.

    PubMed  Google Scholar 

  • Ramana, K. V., Bhatnagar, A., & Srivastava, S. K. (2004). Inhibition of aldose reductase attenuates TNF-alpha-induced expression of adhesion molecules in endothelial cells. The FASEB Journal, 18, 1209–1218.

    Article  CAS  Google Scholar 

  • Ramana, K. V., Fadl, A. A., Tammali, R., Reddy, A. B., Chopra, A. K., & Srivastava, S. K. (2006). Aldose reductase mediates the lipopolysaccharide-induced release of inflammatory mediators in RAW264.7 murine macrophages. The Journal of Biological Chemistry, 281, 33019–33029.

    Article  PubMed  CAS  Google Scholar 

  • Ramana, K. V., Willis, M. S., White, M. D., Horton, J. W., DiMaio, J. M., Srivastava, D., et al. (2006). Endotoxin-induced cardiomyopathy and systemic inflammation in mice is prevented by aldose reductase inhibition. Circulation, 114, 1838–1846.

    Article  PubMed  CAS  Google Scholar 

  • Rashid, M. H., Inoue, M., Toda, K., & Ueda, H. (2004). Loss of peripheral morphine analgesia contributes to the reduced effectiveness of systemic morphine in neuropathic pain. The Journal of Pharmacology and Experimental Therapeutics, 309, 380–387.

    Article  PubMed  CAS  Google Scholar 

  • Rivlin, A. S., & Tator, C. H. (1978). Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat. Surgical Neurology, 10, 38–43.

    PubMed  CAS  Google Scholar 

  • Rosenfeld, J., Capdevielle, J., Guillemot, J. C., & Ferrara, P. (1992). In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Analytical Biochemistry, 203, 173–179.

    Article  PubMed  CAS  Google Scholar 

  • Scholz, J., & Woolf, C. J. (2002). Can we conquer pain? Nature Neuroscience, 5(Suppl), 1062–1067.

    Article  PubMed  CAS  Google Scholar 

  • Seltzer, Z., Dubner, R., & Shir, Y. (1990). A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain, 43, 205–218.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, H. S., Gordh, T., Wiklund, L., Mohanty, S., & Sjoquist, P. O. (2006). Spinal cord injury induced heat shock protein expression is reduced by an antioxidant compound H-290/51. An experimental study using light and electron microscopy in the rat. Journal of Neural Transmission, 113, 521–536.

    Article  PubMed  CAS  Google Scholar 

  • Sindrup, S. H., & Jensen, T. S. (1999). Efficacy of pharmacological treatments of neuropathic pain: an update and effect related to mechanism of drug action. Pain, 83, 389–400.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, P. G., Geiger, J. D., Mattson, M. P., & Scheff, S. W. (2000). Dietary supplement creatine protects against traumatic brain injury. Annals of Neurology, 48, 723–729.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, S., Uehara, T., & Nomura, Y. (2000). Up-regulation of protein-disulfide isomerase in response to hypoxia/brain ischemia and its protective effect against apoptotic cell death. The Journal of Biological Chemistry, 275, 10388–10393.

    Article  PubMed  CAS  Google Scholar 

  • Tarlov, I. M. (1972). Acute spinal cord compression paralysis. Journal of Neurosurgery, 36, 10–20.

    Article  PubMed  CAS  Google Scholar 

  • Tegeder, I., Niederberger, E., Schmidt, R., Kunz, S., Guhring, H., Ritzeler, O., et al. (2004). Specific Inhibition of IkappaB kinase reduces hyperalgesia in inflammatory and neuropathic pain models in rats. The Journal of Neuroscience, 24, 1637–1645.

    Article  PubMed  CAS  Google Scholar 

  • Tjølsen, A., & Hole, K. (1997). Animal models of analgesia. In A. H. Dickenson & J. M. Besson (Eds.), Pharmacology of pain (pp. 1–20). Berlin: Springer.

    Chapter  Google Scholar 

  • Varma, T., Liu, S. Q., West, M., Thongboonkerd, V., Ruvolo, P. P., May, W. S., et al. (2003). Protein kinase C-dependent phosphorylation and mitochondrial translocation of aldose reductase. FEBS Letters, 534, 175–179.

    Article  PubMed  CAS  Google Scholar 

  • Wang, L. X., & Wang, Z. J. (2003). Animal and cellular models of chronic pain. Advanced Drug Delivery Reviews, 55, 949–965.

    Article  PubMed  CAS  Google Scholar 

  • Woolf, C. J., & Costigan, M. (1999). Transcriptional and posttranslational plasticity and the generation of inflammatory pain. Proceedings of the National Academy of Sciences of the United States of America, 96, 7723–7730.

    Article  PubMed  CAS  Google Scholar 

  • Woolf, C. J., & Mannion, R. J. (1999). Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet, 353, 1959–1964.

    Article  PubMed  CAS  Google Scholar 

  • Xu, C. J., Klunk, W. E., Kanfer, J. N., Xiong, Q., Miller, G., & Pettegrew, J. W. (1996). Phosphocreatine-dependent glutamate uptake by synaptic vesicles. A comparison with atp-dependent glutamate uptake. The Journal of Biological Chemistry, 271, 13435–13440.

    Article  PubMed  CAS  Google Scholar 

  • Yabe-Nishimura, C. (1998). Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacological Reviews, 50, 21–33.

    PubMed  CAS  Google Scholar 

  • Yaksh, T. L., Hua, X. Y., Kalcheva, I., Nozaki-Taguchi, N., & Marsala, M. (1999). The spinal biology in humans and animals of pain states generated by persistent small afferent input. Proceedings of the National Academy of Sciences of the United States of America, 96, 7680–7686.

    Article  PubMed  CAS  Google Scholar 

  • Yenari, M. A., Giffard, R. G., Sapolsky, R. M., & Steinberg, G. K. (1999). The neuroprotective potential of heat shock protein 70 (HSP70). Molecular Medicine Today, 5, 525–531.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Niederberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Niederberger, E. (2011). Comparative Proteomic Analysis as a Method to Investigate Inflammatory and Neuropathic Pain. In: Clelland, J. (eds) Genomics, Proteomics, and the Nervous System. Advances in Neurobiology, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7197-5_22

Download citation

Publish with us

Policies and ethics