Skip to main content

Proteomic Analysis of CNS Injury and Recovery

  • Chapter
  • First Online:
Genomics, Proteomics, and the Nervous System

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 2))

Abstract

Despite the enormous medical and economic consequences of traumatic injury to the central nervous system (CNS), little is known about the proteins involved in the resulting pathology. Major advances in the identification of such proteins have been made in recent years through application of differential proteome analysis. Such an approach has revealed a number of novel proteins as potential regulators of the degenerative and regenerative processes that take place in the mammalian brain and spinal cord after a traumatic insult. Some of these proteins may serve as diagnostic and prognostic markers to assess the severity of tissue damage. Comparative proteome analysis of regeneration-competent vs. regeneration-deficient systems are likely to provide new insights into the cellular signals that could be targeted for therapeutic intervention to increase the repair capacity of the human CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D PAGE:

Two-dimensional polyacrylamide gel electrophoresis

CNS:

Central nervous system

GFAP:

Glial fibrillary acidic protein

SCI:

Spinal cord injury

TBI:

Traumatic brain injury

References

  • Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z., & Lindvall, O. (2002). Neuronal replacement from endogenous precursors in the adult brain after stroke. Nature Medicine, 8, 963–970.

    Article  CAS  Google Scholar 

  • Barnea, E., Sorkin, R., Ziv, T., Beer, I., & Admon, A. (2005). Evaluation of prefractionation ­methods as a preparatory step for multidimensional based chromatography of serum proteins. Proteomics, 5, 3367–3375.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M. E., & Bridgman, P. C. (2004). Myosin function in nervous and sensory systems. Journal of Neurobiology, 58, 118–130.

    Article  PubMed  CAS  Google Scholar 

  • Burgess, J. A., Lescuyer, P., Hainard, A., Burkhard, P. R., Turck, N., Michel, P., et al. (2006). Identification of brain cell death associated proteins in human post-mortem cerebrospinal fluid. Journal of Proteome Research, 5, 1674–1681.

    Article  PubMed  CAS  Google Scholar 

  • Busch, S. A., & Silver, J. (2007). The role of extracellular matrix in CNS regeneration. Current Opinion in Neurobiology, 17, 120–127.

    Article  PubMed  CAS  Google Scholar 

  • Conti, A., Sanchez-Ruiz, Y., Bachi, A., Beretta, L., Grandi, E., Beltramo, M., et al. (2004). Proteome study of human cerebrospinal fluid following traumatic brain injury indicates fibrin(ogen) degradation products as trauma-associated markers. Journal of Neurotrauma, 21, 854–863.

    Article  PubMed  Google Scholar 

  • Darling, D. L., Yingling, J., & Wynshaw-Boris, A. (2005). Role of 14-3-3 proteins in eukaryotic signaling and development. Current Topics in Developmental Biology, 68, 281–315.

    Article  PubMed  CAS  Google Scholar 

  • Davidsson, P., Paulson, L., Hesse, C., Blennow, K., & Nilsson, C. L. (2001). Proteome studies of human cerebrospinal fluid and brain tissue using a preparative two-dimensional electrophoresis approach prior to mass spectrometry. Proteomics, 1, 444–452.

    Article  PubMed  CAS  Google Scholar 

  • Dieringer, N. (2003). Activity-related postlesional vestibular reorganization. Annals of the New York Academy of Sciences, 1004, 50–60.

    Article  PubMed  Google Scholar 

  • Ding, Q., Wu, Z., Guo, Y., Zhao, C., Jia, Y., Kong, F., et al. (2006). Proteome analysis of up-­regulated proteins in the rat spinal cord induced by transection injury. Proteomics, 6, 505–518.

    Article  PubMed  CAS  Google Scholar 

  • Doucet, A., & Overall, C. M. (2008). Protease proteomics: Revealing protease in vivo functions using systems biology approaches. Molecular Aspects of Medicine, 29, 339–358.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, R. S., & Fowler, V. M. (2003). Tropomodulins: Life at the slow end. Trends in Cell Biology, 13, 593–601.

    Article  PubMed  CAS  Google Scholar 

  • Gao, Y., Thomas, J. O., Chow, R. L., Lee, G.-H., & Cowan, N. J. (1992). A cytoplasmic chaperonin that catalyzes β-actin folding. Cell, 69, 1043–1050.

    Article  PubMed  CAS  Google Scholar 

  • Gorovits, R., Avidan, N., Avisar, N., Shaked, I., & Vardimon, L. (1997). Glutamine synthetase protects against neuronal degeneration in injured retinal tissue. Proceedings of the National Academy of Sciences of the United States of America, 94, 7024–7029.

    Article  PubMed  CAS  Google Scholar 

  • Graeber, M. B., Raivich, G., & Kreutzberg, G. W. (1989). Increase of transferrin receptors and iron uptake in regenerating motor neurons. Journal of Neuroscience Research, 23, 342–345.

    Article  PubMed  CAS  Google Scholar 

  • Grosche, J., Hartig, W., & Reichenbach, A. (1995). Expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), and Bcl-2 protooncogene protein by Müller (glial) cells in retinal light damage of rats. Neuroscience Letters, 185, 119–122.

    Article  PubMed  CAS  Google Scholar 

  • Han, Z. G., Zhang, Q. H., Ye, M., Kan, L. X., Gu, B. W., He, K. L., et al. (1999). Molecular ­cloning of six novel Krüppel-like zinc finger genes from hematopoietic cells and identification of a novel transregulatory domain KRNB. Journal of Biological Chemistry, 274, 35741–35748.

    Article  PubMed  CAS  Google Scholar 

  • Härtig, W., Grosche, J., Distler, C., Grimm, D., el-Hifnawi, E., & Reichenbach, A. (1995). Alterations of Müller (glial) cells in dystrophic retinae of RCS rats. Journal of Neurocytology, 24, 507–517.

    Article  PubMed  Google Scholar 

  • Hattori, T., Takei, N., Mizuno, Y., Kato, K., & Kohsaka, S. (1995). Neurotrophic and neuroprotective effects of neuron-specific enolase on cultured neurons from embryonic rat brain. Neuroscience Research, 21, 191–198.

    Article  PubMed  CAS  Google Scholar 

  • Hedgecock, E. M., Culotti, J. G., Thomson, J. N., & Perkins, L. A. (1985). Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Developmental Biology, 111, 158–170.

    Article  PubMed  CAS  Google Scholar 

  • Hermeking, H., & Benzinger, A. (2006). 14-3-3 proteins in cell cycle regulation. Seminars in Cancer Biology, 16, 183–192.

    Article  PubMed  CAS  Google Scholar 

  • Hinsch, K., & Zupanc, G. K. H. (2006). Isolation, cultivation, and differentiation of neural stem cells from adult fish brain. Journal of Neuroscience Methods, 158, 75–88.

    Article  PubMed  CAS  Google Scholar 

  • Hinsch, K., & Zupanc, G. K. H. (2007). Generation and long-term persistence of new neurons in the adult zebrafish brain: A quantitative analysis. Neuroscience, 146, 679–696.

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock, P., Ochocinska, M., Sieh, A., & Otteson, D. (2004). Persistent and injury-induced neurogenesis in the vertebrate retina. Progress in Retinal and Eye Research, 23, 183–194.

    Article  PubMed  Google Scholar 

  • Hitchcock, P. F., & Raymond, P. A. (1992). Retinal regeneration. Trends in Neurosciences, 15, 103–108.

    Article  PubMed  CAS  Google Scholar 

  • Horie, H., Inagaki, Y., Sohma, Y., Nozawa, R., Okawa, K., Hasegawa, M., et al. (1999). Galectin-1 regulates initial axonal growth in peripheral nerves after axotomy. Journal of Neuroscience, 19, 9964–9974.

    PubMed  CAS  Google Scholar 

  • Inagaki, Y., Sohma, Y., Horie, H., Nozawa, R., & Kadoya, T. (2000). Oxidized galectin-1 promotes axonal regeneration in peripheral nerves but does not possess lectin properties. European Journal of Biochemistry, 267, 2955–2964.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins, L. W., Peters, G. W., Dixon, C. E., Zhang, X., Clark, R. S. B., Skinner, J. C., et al. (2002). Conventional and functional proteomics using large format two-dimensional gel electrophoresis 24 hours after controlled cortical impact in postnatal day 17 rats. Journal of Neurotrauma, 19, 715–740.

    Article  PubMed  CAS  Google Scholar 

  • Johansson, B. B. (2007). Regeneration and plasticity in the brain and spinal cord. Journal of Cerebral Blood Flow and Metabolism, 27, 1417–1430.

    Article  PubMed  CAS  Google Scholar 

  • Kang, S. K., So, H. H., Moon, Y. S., & Kim, C. H. (2006). Proteomic analysis of injured spinal cord tissue proteins using 2-DE and MALDI-TOF MS. Proteomics, 6, 2797–2812.

    Article  PubMed  CAS  Google Scholar 

  • Kanner, A. A., Marchi, N., Fazio, V., Mayberg, M. R., Koltz, M. T., Siomin, V., et al. (2003). Serum S100beta: A noninvasive marker of blood-brain barrier function and brain lesions. Cancer, 97, 2806–2813.

    Article  PubMed  CAS  Google Scholar 

  • Kiang, J. G., & Tsokos, G. C. (1998). Heat shock protein 70 kDa: Molecular biology, biochemistry, and physiology. Pharmacology & Therapeutics, 80, 183–201.

    Article  CAS  Google Scholar 

  • Kobeissy, F. H., Ottens, A. K., Zhang, Z., Liu, M. C., Denslow, N. D., Dave, J. R., et al. (2006). Novel differential neuroproteomics analysis of traumatic brain injury in rats. Molecular & Cellular Proteomics, 5, 1887–1898.

    Article  CAS  Google Scholar 

  • Kochanek, A. R., Kline, A. E., Gao, W.-M., Chadha, M., Lai, Y., Clark, R. S. B., et al. (2006). Gel-based hippocampal proteomic analysis 2 weeks following traumatic brain injury to ­immature rats using controlled cortical impact. Developmental Neuroscience, 28, 410–419.

    Article  PubMed  CAS  Google Scholar 

  • Lacour, M. (2006). Restoration of vestibular function: Basic aspects and practical advances for rehabilitation. Current Medical Research and Opinion, 22, 1651–1659.

    Article  PubMed  Google Scholar 

  • Lai, J. C. K., Murthy, C. R. K., Cooper, A. J. L., Hertz, E., & Hertz, L. (1989). Differential effects of ammonia and β-methylene-DL-aspartate on metabolism of glutamate and related amino acids by astrocytes and neurons in primary culture. Neurochemical Research, 14, 377–389.

    Article  PubMed  CAS  Google Scholar 

  • Lee, T. H., Lwu, S., Kim, J., & Pelletier, J. (2002). Inhibition of Wilms tumor 1 transactivation by bone marrow zinc finger 2, a novel transcriptional repressor. Journal of Biological Chemistry, 277, 44826–44837.

    Article  PubMed  CAS  Google Scholar 

  • Leung, C. L., Zheng, M., Prater, S. M., & Liem, R. K. (2001). The BPAG1 locus: Alternative splicing produces multiple isoforms with distinct cytoskeletal linker domains, including predominant isoforms in neurons and muscles. Journal of Cell Biology, 154, 691–697.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, G. P., Erickson, P. A., Guerin, C. J., Anderson, D. H., & Fisher, S. K. (1989). Changes in the expression of specific Müller cell proteins during long-term retinal detachment. Experimental Eye Research, 49, 93–111.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, G. P., Guerin, C. J., Anderson, D. H., Matsumoto, B., & Fisher, S. K. (1994). Rapid changes in the expression of glial cell proteins caused by experimental retinal detachment. American Journal of Ophthalmology, 118, 368–376.

    PubMed  CAS  Google Scholar 

  • Li, A., Lane, W. S., Johnson, L. V., Chader, G. J., & Tombran-Tink, J. (1995). Neuron-specific enolase: A neuronal survival factor in the retinal extracellular matrix? Journal of Neuroscience, 15, 385–393.

    PubMed  CAS  Google Scholar 

  • Lifshitz, J., Sullivan, P. G., Hovda, D. A., Wieloch, T., & McIntosh, T. K. (2004). Mitochondrial damage and dysfunction in traumatic brain injury. Mitochondrion, 4, 705–713.

    Article  PubMed  CAS  Google Scholar 

  • Lilley, K. S., Razzaq, A., & Dupree, P. (2002). Two-dimensional gel electrophoresis: Recent advances in sample preparation, detection and quantitation. Current Opinion in Chemical Biology, 6, 46–50.

    Article  PubMed  CAS  Google Scholar 

  • Lin, R. C. S., & Matesic, D. F. (1994). Immunohistochemical demonstration of neuron-specific enolase and microtubule-associated protein 2 in reactive astrocytes after injury in the adult forebrain. Neuroscience, 60, 11–16.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, M. F., Kristal, B. S., Chernokalskaya, E., Lazarev, A., Shestopalov, A. I., Bogdanova, A., et al. (2000). High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis, 21, 3427–3440.

    Article  PubMed  CAS  Google Scholar 

  • López-Otín, C., & Overall, C. M. (2002). Protease degradomics: A new challenge for proteomics. Nature Reviews Molecular Cell Biology, 3, 509–519.

    Article  PubMed  CAS  Google Scholar 

  • Loy, D. N., Sroufe, A. E., Pelt, J. L., Burke, D. A., Cao, Q.-L., Talbott, J. F., et al. (2005). Serum biomarkers for experimental acute spinal cord injury: Rapid elevation of neuron-specific ­enolase and S-100β. Neurosurgery, 56, 391–397.

    Article  PubMed  Google Scholar 

  • Lund, L. M., Machado, V. M., & McQuarrie, I. G. (2002). Increased β-actin and tubulin polymerization in regrowing axons: Relationship to the conditioning lesion effect. Experimental Neurology, 178, 306–312.

    Article  PubMed  CAS  Google Scholar 

  • Lund, L. M., & McQuarrie, I. G. (1996). Axonal regrowth upregulates β-actin and Jun D mRNA expression. Journal of Neurobiology, 31, 476–486.

    Article  PubMed  CAS  Google Scholar 

  • Marouga, R., David, S., & Hawkins, E. (2005). The development of the DIGE system: 2D fluorescence difference gel analysis technology. Analytical and Bioanalytical Chemistry, 382, 669–678.

    Article  PubMed  CAS  Google Scholar 

  • Michetti, F., & Gazzolo, D. (2002). S100B protein in biological fluids: A tool for perinatal ­medicine. Clinical Chemistry, 48, 2097–2104.

    PubMed  CAS  Google Scholar 

  • Michetti, F., Massaro, A., & Murazio, M. (1979). The nervous system-specific S-100 antigen in cerebrospinal fluid of multiple sclerosis patients. Neuroscience Letters, 11, 171–175.

    Article  PubMed  CAS  Google Scholar 

  • Michetti, F., Massaro, A., Russo, G., & Rigon, G. (1980). The S-100 antigen in cerebrospinal fluid as a possible index of cell injury in the nervous system. Journal of the Neurological Sciences, 44, 259–263.

    Article  PubMed  CAS  Google Scholar 

  • Monteoliva, L., & Albar, J. P. (2004). Differential proteomics: An overview of gel and non-gel based approaches. Briefings in Functional Genomics & Proteomics, 3, 220–239.

    Article  CAS  Google Scholar 

  • Nakamura, F., Kalb, R. G., & Strittmatter, S. M. (2000). Molecular basis of semaphorin-mediated axon guidance. Journal of Neurobiology, 44, 219–229.

    Article  PubMed  CAS  Google Scholar 

  • Neuhoff, V., Arold, N., Taube, D., & Ehrhardt, W. (1988). Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis, 9, 255–262.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls, D. G., & Budd, S. L. (2000). Mitochondria and neuronal survival. Physiological Reviews, 80, 315–360.

    PubMed  CAS  Google Scholar 

  • Oliver, C. N., Starke-Reed, P. E., Stadtman, E. R., Liu, G. J., Carney, J. M., & Floyd, R. A. (1990). Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proceedings of the National Academy of Sciences of the United States of America, 87, 5144–5147.

    Article  PubMed  CAS  Google Scholar 

  • Opii, W. O., Nukala, V. N., Sultana, R., Pandya, J. D., Day, K. M., Merchant, M. L., et al. (2007). Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury. Journal of Neurotrauma, 24, 772–789.

    Article  PubMed  Google Scholar 

  • Ott, R., Zupanc, G. K. H., & Horschke, I. (1997). Long-term survival of postembryonically born cells in the cerebellum of gymnotiform fish, Apteronotus leptorhynchus. Neuroscience Letters, 221, 185–188.

    Article  PubMed  CAS  Google Scholar 

  • Otteson, D. C., & Hitchcock, P. F. (2003). Stem cells in the teleost retina: Persistent neurogenesis and injury-induced regeneration. Vision Research, 43, 927–936.

    Article  PubMed  CAS  Google Scholar 

  • Paramio, J. M., Casanova, M. L., Segrelles, C., Mittnacht, S., Lane, E. B., & Jorcano, J. L. (1999). Modulation of cell proliferation by cytokeratins K10 and K16. Molecular and Cellular Biology, 19, 3086–3094.

    PubMed  CAS  Google Scholar 

  • Paterson, J. M., Short, D., Flatman, P. W., Seckl, J. R., Aitken, A., & Dutia, M. B. (2006). Changes in protein expression in the rat medial vestibular nuclei during vestibular compensation. Journal of Physiology, 575, 777–788.

    Article  CAS  Google Scholar 

  • Payne, B. R., & Lomber, S. G. (2002). Plasticity of the visual cortex after injury: What’s different about the young brain? The Neuroscientist, 8, 174–185.

    Article  PubMed  Google Scholar 

  • Pekny, M., & Nilsson, M. (2005). Astrocyte activation and reactive gliosis. Glia, 50, 427–434.

    Article  PubMed  Google Scholar 

  • Pineda, J. A., Wang, K. K. W., & Hayes, R. L. (2004). Biomarkers of proteolytic damage ­following traumatic brain injury. Brain Pathology, 14, 202–209.

    Article  PubMed  CAS  Google Scholar 

  • Porter, G. W., Khuri, F. R., & Fu, H. (2006). Dynamic 14-3-3/client protein interactions integrate survival and apoptotic pathways. Seminars in Cancer Biology, 16, 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Raivich, G., Graeber, M. B., Gehrmann, J., & Kreutzberg, G. W. (1991). Transferrin receptor expression and iron uptake in the injured and regenerating rat sciatic nerve. European Journal of Neuroscience, 3, 919–927.

    Article  PubMed  Google Scholar 

  • Reaume, A. G., Elliott, J. L., Hoffman, E. K., Kowall, N. W., Ferrante, R. J., Siwek, D. R., et al. (1996). Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nature Genetics, 13, 43–47.

    Article  PubMed  CAS  Google Scholar 

  • Rego, A. C., & Oliveira, C. R. (2003). Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: Implications for the pathogenesis of neurodegenerative diseases. Neurochemical Research, 28, 1563–1574.

    Article  PubMed  CAS  Google Scholar 

  • Romeo, M. J., Espina, V., Lowenthal, M., Espina, B. H., Petricoin, E. F., III, & Liotta, L. A. (2005). CSF proteome: A protein repository for potential biomarker identification. Expert Review of Proteomics, 2, 57–70.

    Article  PubMed  CAS  Google Scholar 

  • Rowland, L. P., & Sciarra, D. (1989). Trauma. In L. P. Rowland (Ed.), Merritt’s textbook of neurology (8th ed., pp. 369–393). Philadelphia, London: Lea & Febiger.

    Google Scholar 

  • Santos, M., Paramio, J. M., Bravo, A., Ramirez, A., & Jorcano, J. L. (2002). The expression of keratin K10 in the basal layer of the epidermis inhibits cell proliferation and prevents skin tumorigenesis. Journal of Biological Chemistry, 277, 19122–19130.

    Article  PubMed  CAS  Google Scholar 

  • Segal, M. B. (1993). Extracellular and cerebrospinal fluids. Journal of Inherited Metabolic Disease, 16, 617–638.

    Article  PubMed  CAS  Google Scholar 

  • Segal, M. B. (2000). The choroid plexuses and the barriers between the blood and the cerebrospinal fluid. Cellular and Molecular Neurobiology, 20, 183–196.

    Article  PubMed  CAS  Google Scholar 

  • Serna-Sanz, A., Rairdan, G., & Peck, S. C. (2007). Preparative denaturing isoelectric focusing for enhancing sensitivity of proteomic studies. Methods of Molecular Biology, 354, 99–104.

    CAS  Google Scholar 

  • Sickmann, A., Dormeyer, W., Wortelkamp, S., Woitalla, D., Kuhn, W., & Meyer, H. E. (2000). Identification of proteins from human cerebrospinal fluid, separated by two-dimensional ­polyacrylamide gel electrophoresis. Electrophoresis, 21, 2721–2728.

    Article  PubMed  CAS  Google Scholar 

  • Sickmann, A., Dormeyer, W., Wortelkamp, S., Woitalla, D., Kuhn, W., & Meyer, H. E. (2002). Towards a high resolution separation of human cerebrospinal fluid. Journal of Chromatography B, 771, 167–196.

    Article  CAS  Google Scholar 

  • Siddiqui, S. S., & Culotti, J. G. (1991). Examination of neurons in wild type and mutants of Caenorhabditis elegans using antibodies to horseradish peroxidase. Journal of Neurogenetics, 7, 193–211.

    Article  PubMed  CAS  Google Scholar 

  • Siman, R., McIntosh, T. K., Soltesz, K. M., Chen, Z., Neumar, R. W., & Roberts, V. L. (2004). Proteins released from degenerating neurons are surrogate markers for acute brain damage. Neurobiology of Disease, 16, 311–320.

    Article  PubMed  CAS  Google Scholar 

  • Sirivatanauksorn, Y., Drury, R., Crnogorac-Jurcevic, T., Sirivatanauksorn, V., & Lemoine, N. R. (1999). Laser-assisted microdissection: Applications in molecular pathology. Journal of Pathology, 189, 150–154.

    Article  PubMed  CAS  Google Scholar 

  • Slemmer, J. E., Weber, J. T., & De Zeeuw, C. I. (2004). Cell death, glial protein alterations and elevated S-100β release in cerebellar cell cultures following mechanically induced trauma. Neurobiology of Disease, 15, 563–572.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C. D., Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Stadtman, E. R., Floyd, R. A., et al. (1991). Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 88, 10540–10543.

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew, M. V. (2005). Reactive astrocytes in neural repair and protection. The Neuroscientist, 11, 400–407.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, J. B., Gaul, C., Heckmann, J., Neundörfer, B., & Erbguth, F. J. (2002). Does lumbar cerebrospinal fluid reflect ventricular cerebrospinal fluid? A prospective study in patients with external ventricular drainage. European Neurology, 47, 224–232.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan, P. G., Rabchevsky, A. G., Waldmeier, P. C., & Springer, J. E. (2005). Mitochondrial permeability transition in CNS trauma: Cause or effect of neuronal cell death? Journal of Neuroscience Research, 79, 231–239.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, M., Yakushiji, N., Nakada, Y., Satoh, A., Ide, H., & Tamura, K. (2006). Limb regeneration in Xenopus laevis froglet. ScientificWorld Journal, 6(suppl 1), 26–37.

    Article  PubMed  Google Scholar 

  • Takei, N., Kondo, J., Nagaike, K., Ohsawa, K., Kato, K., & Kohsaka, S. (1991). Neuronal survival factor from bovine brain is identical to neuron-specific enolase. Journal of Neurochemistry, 57, 1178–1184.

    Article  PubMed  CAS  Google Scholar 

  • Tang, H.-Y., Ali-Khan, N., Echan, L. A., Levenkova, N., Rux, J. J., & Speicher, D. W. (2005). A novel four-dimensional strategy combining protein and peptide separation methods enables detection of low-abundance proteins in human plasma and serum proteomes. Proteomics, 5, 3329–3342.

    Article  PubMed  CAS  Google Scholar 

  • Tetzlaff, W., Alexander, S. W., Miller, F. D., & Bisby, M. A. (1991). Response of facial and ­rubrospinal neurons to axotomy: Changes in mRNA expression for cytoskeletal proteins and GAP-43. Journal of Neuroscience, 11, 2528–2544.

    PubMed  CAS  Google Scholar 

  • Tonge, R., Shaw, J., Middleton, B., Rowlinson, R., Rayner, S., Young, J., et al. (2001). Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics, 1, 377–396.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, M.-C., Shen, L.-F., Kuo, H.-S., Cheng, H., & Chak, K.-F. (2008). Involvement of acidic fibroblast growth factor in spinal cord injury repair processes revealed by a proteomics approach. Molecular & Cellular Proteomics, 7, 1668–1687.

    Article  CAS  Google Scholar 

  • Tsuchiya, D., Hong, S., Matsumori, Y., Kayama, T., Swanson, R. A., Dillman, W. H., et al. (2003). Overexpression of rat heat shock protein 70 reduces neuronal injury after transient focal ­ischemia, transient global ischemia, or kainic acid-induced seizures. Neurosurgery, 53, 1179–1188.

    Article  PubMed  Google Scholar 

  • Vance, J. E., Campenot, R. B., & Vance, D. E. (2000). The synthesis and transport of lipids for axonal growth and nerve regeneration. Biochimica et Biophysica Acta, 1486, 84–96.

    Article  PubMed  CAS  Google Scholar 

  • Weisner, B., & Bernhardt, W. (1978). Protein fractions of lumbar, cisternal, and ventricular ­cerebrospinal fluid: Separate areas of reference. Journal of the Neurological Sciences, 37, 205–214.

    Article  PubMed  CAS  Google Scholar 

  • Yaffe, M. B., Farr, G. W., Miklos, D., Horwich, A. L., Sternlicht, M. L., & Sternlicht, H. (1992). TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature, 358, 245–248.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., Dowling, J., Yu, Q.-C., Kouklis, P., Cleveland, D. W., & Fuchs, E. (1996). An essential cytoskeletal linker protein connecting actin microfilaments to intermediate filaments. Cell, 86, 655–665.

    Article  PubMed  CAS  Google Scholar 

  • Yin, M., Wheeler, M. D., Connor, H. D., Zhong, Z., Bunzendahl, H., Dikalova, A., et al. (2001). Cu/Zn-superoxide dismutase gene attenuates ischemia-reperfusion injury in the rat kidney. Journal of the American Society of Nephrology, 12, 2691–2700.

    PubMed  CAS  Google Scholar 

  • Yoshida, M., Muneyuki, E., & Hisabori, T. (2001). ATP synthase: A marvellous rotary engine of the cell. Nature Reviews Molecular Cell Biology, 2, 669–677.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, X., & Desiderio, D. M. (2005). Proteomics analysis of prefractionated human lumbar ­cerebrospinal fluid. Proteomics, 5, 541–550.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, X., Russell, T., Wood, G., & Desiderio, D. M. (2002). Analysis of the human lumbar ­cerebrospinal fluid proteome. Electrophoresis, 23, 1185–1196.

    Article  PubMed  CAS  Google Scholar 

  • Zappaterra, M. D., Lisgo, S. N., Lindsay, S., Gygi, S. P., Walsh, C. A., & Ballif, B. A. (2007). A comparative proteomic analysis of human and rat embryonic cerebrospinal fluid. Journal of Proteome Research, 6, 3537–3548.

    Article  PubMed  CAS  Google Scholar 

  • Zupanc, G. K. H. (2006a). Neurogenesis and neuronal regeneration in the adult fish brain. Journal of Comparative Physiology A, 192, 649–670.

    Article  CAS  Google Scholar 

  • Zupanc, G. K. H. (2006b). Adult neurogenesis and neuronal regeneration in the teleost fish brain: Implications for the evolution of a primitive vertebrate trait. In T. H. Bullock & L. R. Rubenstein (Eds.), The evolution of nervous systems in non-mammalian vertebrates (pp. 485–520). Oxford: Academic.

    Google Scholar 

  • Zupanc, G. K. H. (2008a). Adult neurogenesis in teleost fish. In F. H. Gage, G. Kempermann, & H. Song (Eds.), Adult neurogenesis (pp. 571–592). New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Zupanc, G. K. H. (2008b). Adult neurogenesis and neuronal regeneration in the brain of teleost fish. Journal of Physiology (Paris), 102, 357–373.

    Article  Google Scholar 

  • Zupanc, G. K. H., Clint, S. C., Takimoto, N., Hughes, A. T. L., Wellbrock, U. M., & Meissner, D. (2003). Spatio-temporal distribution of microglia/macrophages during regeneration in the cerebellum of adult teleost fish. Apteronotus leptorhynchus: A quantitative analysis. Brain Behavior and Evolution, 62, 31–42.

    Article  Google Scholar 

  • Zupanc, G. K. H., Hinsch, K., & Gage, F. H. (2005). Proliferation, migration, neuronal differentiation, and long-term survival of new cells in the adult zebrafish brain. Journal of Comparative Neurology, 488, 290–319.

    Article  PubMed  Google Scholar 

  • Zupanc, G. K. H., & Horschke, I. (1995). Proliferation zones in the brain of adult gymnotiform fish: A quantitative mapping study. Journal of Comparative Neurology, 353, 213–233.

    Article  PubMed  CAS  Google Scholar 

  • Zupanc, G. K. H., Horschke, I., Ott, R., & Rascher, G. B. (1996). Postembryonic development of the cerebellum in gymnotiform fish. Journal of Comparative Neurology, 370, 443–464.

    Article  PubMed  CAS  Google Scholar 

  • Zupanc, G. K. H., Kompass, K. S., Horschke, I., Ott, R., & Schwarz, H. (1998). Apoptosis after injuries in the cerebellum of adult teleost fish. Experimental Neurology, 152, 221–230.

    Article  PubMed  CAS  Google Scholar 

  • Zupanc, G. K. H., & Ott, R. (1999). Cell proliferation after lesions in the cerebellum of adult teleost fish: Time course, origin, and type of new cells produced. Experimental Neurology, 160, 78–87.

    Article  PubMed  CAS  Google Scholar 

  • Zupanc, G. K. H., & Zupanc, M. M. (2006). New neurons for the injured brain: Mechanisms of neuronal regeneration in adult teleost fish. Regenerative Medicine, 1, 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Zupanc, M. M., Wellbrock, U. M., & Zupanc, G. K. H. (2006). Proteome analysis identifies novel protein candidates involved in regeneration of the cerebellum of teleost fish. Proteomics, 6, 577–696.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther K. H. Zupanc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zupanc, G.K.H., Zupanc, M.M. (2011). Proteomic Analysis of CNS Injury and Recovery. In: Clelland, J. (eds) Genomics, Proteomics, and the Nervous System. Advances in Neurobiology, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7197-5_20

Download citation

Publish with us

Policies and ethics