Advertisement

Cooperation Relaying in OFDM and MIMO Systems

  • Y.-W. Peter Hong
  • Wan-Jen Huang
  • C.-C. Jay Kuo
Chapter

Abstract

In previous chapters, different cooperative relaying schemes have been introduced under the basic setting where relays are each equipped with a single antenna and transmit over a single-carrier channel. However, cooperative diversity can actually be exploited on top of many other transmission technologies. In particular, the use of cooperation in orthogonal frequency-division multiplexing (OFDM) and multiple-input multiple-output (MIMO) systems have received much attention in recent years due to its importance in current and next generation wireless systems. In this chapter, we first introduce a basic cooperative OFDM system and describe an efficient power and subcarrier allocation algorithm for this system. In this chapter, we first introduce a basic cooperative OFDM system and describe an efficient power and subcarrier allocation algorithm for this system.

Keywords

Power Allocation Discrete Fourier Transform Channel State Information MIMO System Optimal Power Allocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adinoyi, A., Yanikomeroglu, H.: Cooperative relaying in multi-antenna fixed relay networks. IEEE Transactions on Wireless Communications 6(2), 533–544 (2007)CrossRefGoogle Scholar
  2. 2.
    Boleskei, H., Paulraj, A.: Space-frequency coded broadband OFDM systems. In: Proceedings of the IEEE Wireless Communications and Networking Conference, pp. 1–6 (2000)Google Scholar
  3. 3.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)Google Scholar
  4. 4.
    Chalise, B.K., Vandendorpe, L.: MIMO relay design for multipoint-to-multipoint communications with imperfect channel state information. IEEE Transactions on Signal Processing 57(7), 2785–2796 (2009)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Gunduz, D., Goldsmith, A., Poor, H.: Diversity-multiplexing tradeoffs in MIMO relay channels. In: Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), pp. 1–6 (2008)Google Scholar
  6. 6.
    Hammerstr¨om, I., Wittneben, A.: On the optimal power allocation for nonregenerative OFDM relay links. In: IEEE International Conference on Communications, vol. 10, pp. 4463–4468 (2006)CrossRefGoogle Scholar
  7. 7.
    Han, Z., Himsoon, T., Siriwongpairat, W.P., Liu, K.J.R.: Resource allocation for multiuser cooperative OFDM networks: Who helps whom and how to cooperate. IEEE Transactions on Vehicular Technology 58(5), 2378–2391 (2009)CrossRefGoogle Scholar
  8. 8.
    Laneman, J.N., Wornell, G.W.: Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory 49(10), 2415–2425 (2003)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Li, Y., Wang, W., Kong, J., Peng, M.: Subcarrier pairing for amplify-and-forward and decode-and-forward OFDM relay links. IEEE Communications Letters 13(4), 209–211 (2009)CrossRefGoogle Scholar
  10. 10.
    Li, Y., Zhang, W., Xia, X.-G.: Distributive high-rate full-diversity space-frequency codes for asynchronous cooperative communications. In: Proc. on IEEE International Symposium on Information Theory (ISIT), pp. 2612–2616 (2006)Google Scholar
  11. 11.
    Li, Y., Zhang, W., Xia, X.-G.: Distributive high-rate space-frequency codes achieving full cooperative and multipath diversities for asynchronous cooperative communications. IEEE Transactions on Vehicular Technology 58(1), 207–217 (2009)CrossRefGoogle Scholar
  12. 12.
    Liang, Y., Schober, R.: Cooperative amplify-and-forward beamforming for OFDM systems with multiple relays. In: IEEE International Conference on Communications (ICC), pp. 1–6 (2009)Google Scholar
  13. 13.
    Munoz, O., Vidal, J., Agustin, A.: Non-regenerative MIMO relaying with channel state information. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 3, pp. 361–364 (2005)CrossRefGoogle Scholar
  14. 14.
    Munoz-Medina, O., Vidal, J., Agustin, A.: Linear transceiver design in nonregenerative relays with channel state information. IEEE Transactions on Signal Processing 55(6), 2593–2604 (2007)CrossRefMathSciNetGoogle Scholar
  15. 15.
    O’Hara, B., Petrick, A.: The IEEE 802.11 Handbook: A Designer’s Companion. IEEE Press, New York (1999)Google Scholar
  16. 16.
    Seddik, K.G., Liu, K.J.R.: Distributed space-frequency coding over amplify-andforward relay channels. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), pp. 356–361 (2008)Google Scholar
  17. 17.
    Seddik, K.G., Liu, K.J.R.: Distributed space-frequency coding over broadband relay channels. IEEE Transactions on Wireless Communications 7(11), 4748–4759 (2008)CrossRefGoogle Scholar
  18. 18.
    Sripathi, P.U., Lehnert, J.S.: A throughput scaling law for a class of wireless relay networks. In: Proceedings of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 1333–1337 (2004)CrossRefGoogle Scholar
  19. 19.
    Su, W., Safar, Z., Liu, K.J.R.: Full-rate full-diversity space-frequency codes with optimum coding advantage. IEEE Transactions on Information Theory 51(1), 229–249 (2005)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Sung, K.-Y., Hong, Y.-W. P., Chao, C.-C.: Resource allocation and partner selection for wireless cooperative multicarrier systems. submitted to Transactions on Wireless Communications (2009)Google Scholar
  21. 21.
    Tang, X., Hua, Y.: Optimal design of non-regenerative MIMO wireless relays. IEEE Transactions on Wireless Communications 6(4), 1398–1407 (2007)CrossRefGoogle Scholar
  22. 22.
    Tang X. Hua, Y.: Optimal waveform design for MIMO relaying. In: Proceedings of IEEE 6th Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 289–293 (2005)Google Scholar
  23. 23.
    Wang, B., Zhang, J., Host-Madsen, A.: On the capacity of MIMO relay channels. IEEE Transactions on Information Theory 51(1), 29–43 (2005)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Wang, W., Wu, R.: Capacity maximization for OFDM two-hop relay system with separate power constraints. IEEE Transactions on Vehicular Technology 58(9), 4943–4954 (2009)CrossRefGoogle Scholar
  25. 25.
    Yang, S., Belfiore, J.-C.: Optimal space-time codes for the MIMO amplify-and-forward cooperative channel. In: Proceedings of the IEEE International Zuirch Seminar on Communications (IZS), pp. 122–125 (2006)Google Scholar
  26. 26.
    Yilmaz, A.: Cooperative multiple-access in fading relay channels. In: IEEE International Conference on Communications (ICC), vol. 10, pp. 4532–4537 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Y.-W. Peter Hong
    • 1
  • Wan-Jen Huang
    • 2
  • C.-C. Jay Kuo
    • 3
  1. 1.Department of Electrical EngineeringNational Tsing Hua UniversityHsinchuTaiwan R.O.C.
  2. 2.Institute of Comm. Engin.National Sun Yat-Sen UniversityKaohsiungTaiwan R.O.C.
  3. 3.Viterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations