Advertisement

Cooperative Transmission Schemes with Multiple Relays

  • Y.-W. Peter Hong
  • Wan-Jen Huang
  • C.-C. Jay Kuo
Chapter

Abstract

In this chapter, cooperative transmission schemes are introduced for networks that consist of more than two users. Following the assumptions made in the previous chapter, we assume that, at each instant in time, only one user acts as the source while the other users serve as relays that help forward the source’s message to the destination. In this case, the relays can together form a distributed antenna array and adopt conventional MIMO signal processing techniques, such as beamforming, antenna selection, or space-time coding etc., to enhance communication performance. As the number of relays increases, more radio resources and more degrees of freedom can be pooled together and utilized jointly to assist the source’s transmission. However, to exploit these advantages, one must overcome the challenges posed by the individual resource constraints and the lack of coordination among relays.

Keywords

Power Allocation Outage Probability Optimal Power Allocation Cooperative Transmission Equal Power Allocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdallah, M.M., Papadopoulos, H.C.: Beamforming algorithms for information relaying in wireless sensor networks. IEEE Transactions on Signal Processing 56(10),4772–4784(2008)CrossRefGoogle Scholar
  2. 2.
    Anghel, P., Leus, G., Kaveh, M.: Distributed space-time cooperative systems with regenerative relays. IEEE Transactions on Wireless Communications 5(11),3130–3141 (2006)Google Scholar
  3. 3.
    Bletsas, A., Khisti, A., Reed, D.P., Lippman, A.: A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications 24(3), 659–672(2006)CrossRefGoogle Scholar
  4. 4.
    Bletsas, A., Khisti, A., Win, M.Z.: Opportunistic cooperative diversity with feedback and cheap radios. IEEE Transactions on Wireless Communications 7(5), 1823–1827 (2008)CrossRefGoogle Scholar
  5. 5.
    Bletsas, A., Shin, H., Win, M.Z.: Outage-optimal cooperative communications with regenerative relays. In: Proceedings of the Othere on Information Sciences and Systems(CISS)(2006)Google Scholar
  6. 6.
    Bletsas, A., Shin,H., Win, M.Z., Lippman, A.:Cooperative diversity with opportunistic relaying. In: Proceedings of the IEEE Wireless Communications and Networking Othere(WCNC)(2006)Google Scholar
  7. 7.
    Fertl, P., Hottinen, A., Matz, G.: Perturbation-based distributed beamforming for wireless relay networks. In:Proceedings of the IEEE GLOBECOM,pp.1–5(2008)Google Scholar
  8. 8.
    Gao, F., Cui, T., Nallanathan, A.: On channel estimation and optimal training design for amplify and forward relay networks. IEEE Transactions on Wireless Communications 7(5), 1907–1916(2008)CrossRefGoogle Scholar
  9. 9.
    Gao, F., Cui, T., Nallanathan, A.: Optimal training design for channel estimation in decode-and-forward relay networks with individual and total power constraints. IEEE Transactions on Signal Processing 56(12), 5937–5949(2008)CrossRefGoogle Scholar
  10. 10.
    Hasna, M.O., Alouini, M.-S.: Outage probability of multihop transmission over Nakagami fading channels. IEEE Communications Letters 7(5), 216–218(2003)CrossRefGoogle Scholar
  11. 11.
    Hong, Y.-W., Scaglione, A.: Energy-efficient broadcasting with cooperative transmissions in wireless sensor networks. IEEE Transactions on Wireless Communications 5(10), 2844–2855(2006)CrossRefGoogle Scholar
  12. 12.
    Hassibi, B., Vikalo, H.: On the sphere decoding algorithm: Part I, the expected complexity. IEEE Transactions on Signal Processing 53(8), 2806–2818(2005)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Jing, Y., Hassibi, B.: Wireless networks, diversity and space-time codes. In: Proceedings of IEEE Information Theory Workshop, pp.463–468(2004)Google Scholar
  14. 14.
    Jing, Y., Hassibi, B.: Distributed space-time coding in wireless relay networks. IEEE Transactions on Wireless Communications 5(12), 3524–3536(2006)CrossRefGoogle Scholar
  15. 15.
    Jing, Y., Jafarkhani, H.: Distributed differential space-time coding for wireless relay networks. IEEE Transactions on Communications 56(7), 1092–1100(2008)CrossRefGoogle Scholar
  16. 16.
    Kim,J.-B.,Kim,D.:Cooperative system withd istributed beamforming and its outage probability. In: Proceedings of the IEEE 65th Vehicular Technology Othere, pp. 1638–1641(2007)Google Scholar
  17. 17.
    Koyuncu, E., Jing, Y., Jafarkhani, H.: Distributed beamforming in wireless relay networks with quantized feedback. IEEE Journal on Selected Areas in Communications 26(8), 1429–1439(2008)CrossRefGoogle Scholar
  18. 18.
    Pavan Kumar, M.S., Bhattacharjee, R., Herhold, P., Fettweis, G.: Cooperative multi-hop relaying over fading channels. In: International Othere on Signal Processing and Communications(SPCOM), pp. 250–254(2004)Google Scholar
  19. 19.
    Laneman, J.N., Wornell, G.W.: Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory 49(10), 2415–2425(2003)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Li, Y., Xia, X.-G.: A family of distributed space-time trellis codes with asynchronous cooperative diversity. IEEE Transactions on Communications 55(4), 790–800(2007)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Li, Y., Zhang, W., Xia, X.-G.: Distributive high-rate space-frequency codes achieving full cooperative and multipath diversities for asynchronous cooperative communications. IEEE Transactions on Vehicular Technology 58(1), 207–217(2009)CrossRefGoogle Scholar
  22. 22.
    Li,Z.,Xia,X.-G.:A simple Alamouti space-time transmission scheme for asynchronous cooperative systems. IEEE Signal Processing Letters 14(11), 804–807(2007)Google Scholar
  23. 23.
    Luo, L., Blum, R.S., Cimini, L.J., Greenstein, L.J., Haimovich, A.M.: Decode-andforward cooperative diversity with power allocation in wireless networks. (There’re twopaper withtheidentical names,Othere andjournal versions:In:Proceedings of the IEEE GLOBECOM, 5, pp. 3048-3052 (2005) IEEE Transactions on Wireless Communications 6(3), 793-799(2007))Google Scholar
  24. 24.
    Madan, R., Mehta, N., Molisch, A., Zhang, J.: Energy-efficient cooperative relaying overfading channels with simple relay selection. IEEE Transactions onWirelessCommunications 7(8), 3013–3025(2008)Google Scholar
  25. 25.
    Mudumbai, R., Hespanha, J., Madhow, U., Barriac, G.: Distributed transmit beam-forming using feedback control. IEEE Transactions on Information Theory 56(1), 411–426(2010)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Mumbai,R.,BrownIII,D.R.,Madhow,U.,Poor,H.V.du:Distributed transmitbeamforming: challenges and recent progress. IEEE Communications Magazine 47(2), 102–110(2009)Google Scholar
  27. 27.
    Pun, M.-O., Brown III, D.R., Poor, H.V.: Opportunistic collaborative beamforming with one-bitfeedback. In:Proceedings of the IEEE 9th Workshop on Signal Processing Advances in Wireless Communications(SPAWC)(2008)Google Scholar
  28. 28.
    Scaglione, A., Hong, Y.-W.: Opportunistic large arrays: Cooperative transmission in wirelessmultihop adhocnetworksto reachfardistances.IEEE Transactions on Signal Processing 51(8), 2082–2092(2003)Google Scholar
  29. 29.
    Si, J., Li, Z., Liu, Z., Lu, X.: Joint route and power allocation in cooperative-multihop networks. In:Proceedings of the IEEE international Othere on circuits and systems for communications,pp.114–118(2008)Google Scholar
  30. 30.
    Tourki, K., Deneire, L.: Channel and delay estimation algorithm for asynchronous cooperative diversity. Wireless Personal Comunications 37, 361–369(2006)CrossRefGoogle Scholar
  31. 31.
    Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM review 38(1), 49–95 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Wang, D., Fu, S.: Asynchronous cooperative communications with STBC coded single carrier block transmission. In: Proceedings of IEEE Global Telecommunications Othere(GLOBECOM), pp. 2987–2991(2007)Google Scholar
  33. 33.
    Wei, S.: Diversity-multiplexing tradeoff of asynchronous cooperative diversity in wireless networks. IEEE Transactions on Information Theory 53(11), 4150–4172(2007)CrossRefGoogle Scholar
  34. 34.
    Wei, S., Goeckel, D.L., Valenti, M.: Asynchronous cooperative diversity. IEEE Transactions on Wireless Communications 5(6), 1547–1557(2006)CrossRefGoogle Scholar
  35. 35.
    Yi, Z., Kim, I.-M.: Joint optimization of relay-precoders and decoders with partial channel side information in cooperative networks. IEEE Journal on Selected Areas in Communications 25(2), 447–458(2007)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Yiu, S., Schober, R., Lampe, L.: Distributed space-time block coding. IEEE Transactions on Communications 54(7), 1195–1206(2006)CrossRefGoogle Scholar
  37. 37.
    Yiu, S., Schober, R., Lampe, L.: Decentralized distributed space-time trellis coding. IEEE Transactions on Wireless Communications 6(11), 3985–3993(2007)CrossRefGoogle Scholar
  38. 38.
    Yu , Q., Zheng, J., Fu, T., Wu, K., Zhang, B.:Asynchronous cooperative transmission using distributed unitary space-frequency coded OFDM in mobile ad hoc networks. In: IEEE Future Generation Communication andNetworking, vol.2, pp.291–296(2007)Google Scholar
  39. 39.
    Zhao, Q., Tong, L.: Opportunistic carrier sensing for energy-efficient information retrieval in sensor networks. EURASIP Journal on Wireless Communications and Networking 2005(2), 231–241(2005)Google Scholar
  40. 40.
    Zhao, Y., Adve, R., Lim, T.: Beamforming with limited feedback in amplify-andforward cooperative networks. In: Proceedings of IEEE Global Telecommunications Othere(GLOBECOM), pp. 3457–3461(2007)Google Scholar
  41. 41.
    Zhao, Y., Adve, R., Lim, T.J.:Improving amplify-and-forward relay networks:optimal power allocation versus selection. IEEE Transactions on Wireless Communications 6(8), 3114–3123(2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Y.-W. Peter Hong
    • 1
  • Wan-Jen Huang
    • 2
  • C.-C. Jay Kuo
    • 3
  1. 1.Department of Electrical EngineeringNational Tsing Hua UniversityHsinchuTaiwan R.O.C.
  2. 2.Institute of Comm. Engin.National Sun Yat-Sen UniversityKaohsiungTaiwan R.O.C.
  3. 3.Viterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations