Skip to main content

Cooperative Transmission Schemes with Multiple Relays

  • Chapter
  • First Online:
  • 1043 Accesses

Abstract

In this chapter, cooperative transmission schemes are introduced for networks that consist of more than two users. Following the assumptions made in the previous chapter, we assume that, at each instant in time, only one user acts as the source while the other users serve as relays that help forward the source’s message to the destination. In this case, the relays can together form a distributed antenna array and adopt conventional MIMO signal processing techniques, such as beamforming, antenna selection, or space-time coding etc., to enhance communication performance. As the number of relays increases, more radio resources and more degrees of freedom can be pooled together and utilized jointly to assist the source’s transmission. However, to exploit these advantages, one must overcome the challenges posed by the individual resource constraints and the lack of coordination among relays.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdallah, M.M., Papadopoulos, H.C.: Beamforming algorithms for information relaying in wireless sensor networks. IEEE Transactions on Signal Processing 56(10),4772–4784(2008)

    Article  Google Scholar 

  2. Anghel, P., Leus, G., Kaveh, M.: Distributed space-time cooperative systems with regenerative relays. IEEE Transactions on Wireless Communications 5(11),3130–3141 (2006)

    Google Scholar 

  3. Bletsas, A., Khisti, A., Reed, D.P., Lippman, A.: A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications 24(3), 659–672(2006)

    Article  Google Scholar 

  4. Bletsas, A., Khisti, A., Win, M.Z.: Opportunistic cooperative diversity with feedback and cheap radios. IEEE Transactions on Wireless Communications 7(5), 1823–1827 (2008)

    Article  Google Scholar 

  5. Bletsas, A., Shin, H., Win, M.Z.: Outage-optimal cooperative communications with regenerative relays. In: Proceedings of the Othere on Information Sciences and Systems(CISS)(2006)

    Google Scholar 

  6. Bletsas, A., Shin,H., Win, M.Z., Lippman, A.:Cooperative diversity with opportunistic relaying. In: Proceedings of the IEEE Wireless Communications and Networking Othere(WCNC)(2006)

    Google Scholar 

  7. Fertl, P., Hottinen, A., Matz, G.: Perturbation-based distributed beamforming for wireless relay networks. In:Proceedings of the IEEE GLOBECOM,pp.1–5(2008)

    Google Scholar 

  8. Gao, F., Cui, T., Nallanathan, A.: On channel estimation and optimal training design for amplify and forward relay networks. IEEE Transactions on Wireless Communications 7(5), 1907–1916(2008)

    Article  Google Scholar 

  9. Gao, F., Cui, T., Nallanathan, A.: Optimal training design for channel estimation in decode-and-forward relay networks with individual and total power constraints. IEEE Transactions on Signal Processing 56(12), 5937–5949(2008)

    Article  Google Scholar 

  10. Hasna, M.O., Alouini, M.-S.: Outage probability of multihop transmission over Nakagami fading channels. IEEE Communications Letters 7(5), 216–218(2003)

    Article  Google Scholar 

  11. Hong, Y.-W., Scaglione, A.: Energy-efficient broadcasting with cooperative transmissions in wireless sensor networks. IEEE Transactions on Wireless Communications 5(10), 2844–2855(2006)

    Article  Google Scholar 

  12. Hassibi, B., Vikalo, H.: On the sphere decoding algorithm: Part I, the expected complexity. IEEE Transactions on Signal Processing 53(8), 2806–2818(2005)

    Article  MathSciNet  Google Scholar 

  13. Jing, Y., Hassibi, B.: Wireless networks, diversity and space-time codes. In: Proceedings of IEEE Information Theory Workshop, pp.463–468(2004)

    Google Scholar 

  14. Jing, Y., Hassibi, B.: Distributed space-time coding in wireless relay networks. IEEE Transactions on Wireless Communications 5(12), 3524–3536(2006)

    Article  Google Scholar 

  15. Jing, Y., Jafarkhani, H.: Distributed differential space-time coding for wireless relay networks. IEEE Transactions on Communications 56(7), 1092–1100(2008)

    Article  Google Scholar 

  16. Kim,J.-B.,Kim,D.:Cooperative system withd istributed beamforming and its outage probability. In: Proceedings of the IEEE 65th Vehicular Technology Othere, pp. 1638–1641(2007)

    Google Scholar 

  17. Koyuncu, E., Jing, Y., Jafarkhani, H.: Distributed beamforming in wireless relay networks with quantized feedback. IEEE Journal on Selected Areas in Communications 26(8), 1429–1439(2008)

    Article  Google Scholar 

  18. Pavan Kumar, M.S., Bhattacharjee, R., Herhold, P., Fettweis, G.: Cooperative multi-hop relaying over fading channels. In: International Othere on Signal Processing and Communications(SPCOM), pp. 250–254(2004)

    Google Scholar 

  19. Laneman, J.N., Wornell, G.W.: Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory 49(10), 2415–2425(2003)

    Article  MathSciNet  Google Scholar 

  20. Li, Y., Xia, X.-G.: A family of distributed space-time trellis codes with asynchronous cooperative diversity. IEEE Transactions on Communications 55(4), 790–800(2007)

    Article  MathSciNet  Google Scholar 

  21. Li, Y., Zhang, W., Xia, X.-G.: Distributive high-rate space-frequency codes achieving full cooperative and multipath diversities for asynchronous cooperative communications. IEEE Transactions on Vehicular Technology 58(1), 207–217(2009)

    Article  Google Scholar 

  22. Li,Z.,Xia,X.-G.:A simple Alamouti space-time transmission scheme for asynchronous cooperative systems. IEEE Signal Processing Letters 14(11), 804–807(2007)

    Google Scholar 

  23. Luo, L., Blum, R.S., Cimini, L.J., Greenstein, L.J., Haimovich, A.M.: Decode-andforward cooperative diversity with power allocation in wireless networks. (There’re twopaper withtheidentical names,Othere andjournal versions:In:Proceedings of the IEEE GLOBECOM, 5, pp. 3048-3052 (2005) IEEE Transactions on Wireless Communications 6(3), 793-799(2007))

    Google Scholar 

  24. Madan, R., Mehta, N., Molisch, A., Zhang, J.: Energy-efficient cooperative relaying overfading channels with simple relay selection. IEEE Transactions onWirelessCommunications 7(8), 3013–3025(2008)

    Google Scholar 

  25. Mudumbai, R., Hespanha, J., Madhow, U., Barriac, G.: Distributed transmit beam-forming using feedback control. IEEE Transactions on Information Theory 56(1), 411–426(2010)

    Article  MathSciNet  Google Scholar 

  26. Mumbai,R.,BrownIII,D.R.,Madhow,U.,Poor,H.V.du:Distributed transmitbeamforming: challenges and recent progress. IEEE Communications Magazine 47(2), 102–110(2009)

    Google Scholar 

  27. Pun, M.-O., Brown III, D.R., Poor, H.V.: Opportunistic collaborative beamforming with one-bitfeedback. In:Proceedings of the IEEE 9th Workshop on Signal Processing Advances in Wireless Communications(SPAWC)(2008)

    Google Scholar 

  28. Scaglione, A., Hong, Y.-W.: Opportunistic large arrays: Cooperative transmission in wirelessmultihop adhocnetworksto reachfardistances.IEEE Transactions on Signal Processing 51(8), 2082–2092(2003)

    Google Scholar 

  29. Si, J., Li, Z., Liu, Z., Lu, X.: Joint route and power allocation in cooperative-multihop networks. In:Proceedings of the IEEE international Othere on circuits and systems for communications,pp.114–118(2008)

    Google Scholar 

  30. Tourki, K., Deneire, L.: Channel and delay estimation algorithm for asynchronous cooperative diversity. Wireless Personal Comunications 37, 361–369(2006)

    Article  Google Scholar 

  31. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM review 38(1), 49–95 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  32. Wang, D., Fu, S.: Asynchronous cooperative communications with STBC coded single carrier block transmission. In: Proceedings of IEEE Global Telecommunications Othere(GLOBECOM), pp. 2987–2991(2007)

    Google Scholar 

  33. Wei, S.: Diversity-multiplexing tradeoff of asynchronous cooperative diversity in wireless networks. IEEE Transactions on Information Theory 53(11), 4150–4172(2007)

    Article  Google Scholar 

  34. Wei, S., Goeckel, D.L., Valenti, M.: Asynchronous cooperative diversity. IEEE Transactions on Wireless Communications 5(6), 1547–1557(2006)

    Article  Google Scholar 

  35. Yi, Z., Kim, I.-M.: Joint optimization of relay-precoders and decoders with partial channel side information in cooperative networks. IEEE Journal on Selected Areas in Communications 25(2), 447–458(2007)

    Article  MathSciNet  Google Scholar 

  36. Yiu, S., Schober, R., Lampe, L.: Distributed space-time block coding. IEEE Transactions on Communications 54(7), 1195–1206(2006)

    Article  Google Scholar 

  37. Yiu, S., Schober, R., Lampe, L.: Decentralized distributed space-time trellis coding. IEEE Transactions on Wireless Communications 6(11), 3985–3993(2007)

    Article  Google Scholar 

  38. Yu , Q., Zheng, J., Fu, T., Wu, K., Zhang, B.:Asynchronous cooperative transmission using distributed unitary space-frequency coded OFDM in mobile ad hoc networks. In: IEEE Future Generation Communication andNetworking, vol.2, pp.291–296(2007)

    Google Scholar 

  39. Zhao, Q., Tong, L.: Opportunistic carrier sensing for energy-efficient information retrieval in sensor networks. EURASIP Journal on Wireless Communications and Networking 2005(2), 231–241(2005)

    Google Scholar 

  40. Zhao, Y., Adve, R., Lim, T.: Beamforming with limited feedback in amplify-andforward cooperative networks. In: Proceedings of IEEE Global Telecommunications Othere(GLOBECOM), pp. 3457–3461(2007)

    Google Scholar 

  41. Zhao, Y., Adve, R., Lim, T.J.:Improving amplify-and-forward relay networks:optimal power allocation versus selection. IEEE Transactions on Wireless Communications 6(8), 3114–3123(2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-W. Peter Hong .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hong, YW.P., Huang, WJ., Kuo, CC.J. (2010). Cooperative Transmission Schemes with Multiple Relays. In: Cooperative Communications and Networking. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7194-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7194-4_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-7193-7

  • Online ISBN: 978-1-4419-7194-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics