Advertisement

Introduction

  • Y.-W. Peter Hong
  • Wan-Jen Huang
  • C.-C. Jay Kuo
Chapter

Abstract

Wireless communications have gained much popularity in recent years due to its ability to provide untethered connectivity and mobile access. However, before the turn of the century, many attempts to achieve reliable and high data-rate communication over the wireless channel have been unsuccessful due to multipath fading, shadowing, and path loss effects. These effects result in random variations of channel quality in time, frequency, and space, making it difficult to employ conventional wireline communication techniques in the wireless environment. Not until the past two decades have people developed effective transmit and receive diversity techniques to exploit diversity in different channel dimensions, such as time, frequency, and space, and achieve the so-called diversity gains.

Keywords

IEEE Transaction Multiple Access Channel Cooperative Communication Relay Network Broadcast Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    3rd General Partnership Project: Technical specification group radio access network: Further advancements for E-UTRA physical layer aspects (Release 9). Tech. Rep. 36.814(V9.0.0)(2010)Google Scholar
  2. 2.
    Abdallah, M.M., Papadopoulos, H.C.: Beamforming algorithms for information relaying in wireless sensor networks. IEEE Transactions on Signal Processing 56(10), 4772–4784(2008)CrossRefGoogle Scholar
  3. 3.
    Anghel, P., Leus, G., Kaveh, M.: Distributed space-time cooperative systems with regenerative relays.IEEE Transactionson Wireless Communications 5(11),3130–3141 (2006)Google Scholar
  4. 4.
    Aref, M.R.: Information flow in relay networks. Ph.D. thesis, Stanford University (1980)Google Scholar
  5. 5.
    Azarian, K., ElGamal,H., Schniter, P.:On the achievable diversity-multiplexing tradeo in half-duplex cooperative channels. IEEE Transactions on Information Theory 51(12), 4152–4172(2005)Google Scholar
  6. 6.
    Bergmans, P.P., Cover, T.M.: Cooperative broadcasting. IEEE Transactions on Information Theory 20(3), 317–324(1974)Google Scholar
  7. 7.
    Bletsas, A., Khisti, A., Reed, D.P., Lippman, A.: A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications 24(3), 659–672(2006)CrossRefGoogle Scholar
  8. 8.
    Caire, G., Shamai, S.:On the achievable through put of a multiantenna Gaussian broadcast channel. IEEE Transactions on Information Theory 49(7), 1691–1706(2003)Google Scholar
  9. 9.
    Carleial, A.B.: Multiple-access channels with different generalized feedback signals. IEEE Transactions on Information Theory 28(6), 841–850(1982)MATHCrossRefGoogle Scholar
  10. 10.
    Cover, T., El Gamal, A.: Capacity theorems for the relay channel. IEEE Transactions on Information Theory 25(5), 572–584(1979)MATHCrossRefGoogle Scholar
  11. 11.
    Cover, T.M.: Broadcast channels. IEEE Transactions on Information Theory 18(1), 2–14(1972)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Cover, T.M., El Gamal, A., Salehi, M.: Multiple access channels with arbitrarily correlated sources. IEEE Transactions on Information Theory 26(6), 648–657(1980)MATHCrossRefGoogle Scholar
  13. 13.
    Cover, T.M., Leung, C.S.K.: An achievable rate region for the multiple-access channel with feedback. IEEE Transactions on Information Theory 27(3), 292–298(1981)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    ElGamal,A.:On information flow in relay networks.In:Proceedings of IEEE National Telecommunications Conference, vol.2,pp.D4.1.1–D4.1.4.Miami,FL(1981)Google Scholar
  15. 15.
    El Gamal, A., Aref, M.: The capacity of the semideterministic relay channel. IEEE Transactions on Information Theory IT-28(3), 536(1982)Google Scholar
  16. 16.
    Fareed, M.M., Uysal, M.: On relay selection for decode-and-forward relaying. IEEE Transactions on Wireless Communications 8(7), 3341–3346(2009)CrossRefGoogle Scholar
  17. 17.
    Foschini, G.J.: Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell System Technical Journal 1, 41–59(1996)CrossRefGoogle Scholar
  18. 18.
    Gaarder, N., Wolf, J.: The capacity region of a multiple-access discrete memoryless channel can increase with feedback. IEEE Transactions on Information Theory 21(1), 100–102(1975)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Gallager, R.G.: Low density parity check codes. Ph.D. thesis, Massachusetts Institute of Technology(1963)Google Scholar
  20. 20.
    Gel’fand, S.I., Pinsker, M.S.: Capacity of a broadcast channel with one deterministic component. Problemy Peredachi Informatsii 16(1), 24–34(1980)MathSciNetGoogle Scholar
  21. 21.
    Han, T.S., Costa, M.H.M.: Broadcast channels with arbitrarily correlated sources. IEEE Transactions on Information Theory 33(5), 641–650(1987)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Hong, Y.-W., Scaglione, A.: Energy-efficient broadcasting with cooperative transmissions in wireless sensor networks. IEEE Transactions on Wireless Communications 5(10), 2844–2855(2006)CrossRefGoogle Scholar
  23. 23.
    Hong, Y.-W.P., Lin,C.-K., Wang,S.-H.: Exploiting cooperative advantages in slotted ALOHA random access networks. to appear in IEEE Transactions on Information Theory(2010)Google Scholar
  24. 24.
    Host-Madsen, A., Zhang, J.: Capacity bounds and power allocation for wireless relay channels. IEEE Transactions on Information Theory 51(6), 2020–2040(2005)CrossRefMathSciNetGoogle Scholar
  25. 25.
    IEEE Standard 802.16e-2005: IEEE Standard for Local and Metropolitan Area Networks -Part 16: Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands(2005)Google Scholar
  26. 26.
    IEEE Standard 802.16j-2009: IEEE Standard for Local and Metropolitan Area Networks -Part 16: Air interface for broadband wireless access systems – Multihop relay specification(2009)Google Scholar
  27. 27.
    Janani, M., Hedayat, A., Hunter, T.E., Nosratinia, A.: Coded cooperation in wireless communications: Space-time transmission and iterative decoding. IEEE Transactions on Signal Processing 52(2), 362–371(2004)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Jindal, N., Vishwanath, S., Goldsmith, A.: On the duality of Gaussian multiple-access and broadcast channels. IEEE Transactions on Information Theory 50(5), 768–783 (2004)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Jing, Y., Hassibi, B.: Distributed space-time coding in wireless relay networks. IEEE Transactions on Wireless Communications 5(12), 3524–3536(2006)CrossRefGoogle Scholar
  30. 30.
    Jing, Y., Jafarkhani, H.: Distributed differential space-time coding for wireless relay networks. IEEE Transactions on Communications 56(7), 1092–1100(2008)CrossRefGoogle Scholar
  31. 31.
    Jing, Y., Jafarkhani, H.: Network beamforming using relays with perfect channel information. IEEE Transactions on Information Theory 55(6), 2499–2517(2009)CrossRefMathSciNetGoogle Scholar
  32. 32.
    King, R.C.:Multiple access channels with generalized feedback.Ph.D.thesis,Stanford University(1978)Google Scholar
  33. 33.
    Koyuncu, E., Jing, Y., Jafarkhani, H.: Distributed beamforming in wireless relay networks with quantized feedback. IEEE Journal on Selected Areas in Communications 26(8), 1429–1439(2008)CrossRefGoogle Scholar
  34. 34.
    Kramer, G., Gastpar, M., Gupta, P.: Capacity theorems for wireless relay channels. In: Proc. 41st Annu. Allerton Conf. Communications, Control, and Computing, pp. 1074–1083. Monticello, IL(2003)Google Scholar
  35. 35.
    Kramer,G.,Gastpar,M.,Gupta,P.:Cooperative strategies and capacity theoremsfor relay networks. IEEE Transactions on Information Theory 51(9), 3037–3063(2005)Google Scholar
  36. 36.
    Laneman, J.N., Tse, D.N.C., Wornell, G.W.: Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory 50(12), 3062–3080(2004)CrossRefMathSciNetGoogle Scholar
  37. 37.
    Laneman, J.N., Wornell, G.W.: Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory 49(10), 2415–2425(2003)CrossRefMathSciNetGoogle Scholar
  38. 38.
    MacKay, D.J.C.: Good error-correcting codes based on very sparse matrices. IEEE Transactions on Information Theory 45(2), 399–432(1999)MATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Marton, K.: A coding theorem for the discrete memoryless broadcast channel. IEEE Transactions on Information Theory 25(3), 306–311(1979)MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Peters, S.W., Heath, Jr., R.W.: The future of WiMAX: Multihop relaying with IEEE 802.16j. IEEECommunicationsMagazinepp.104–111(2009)Google Scholar
  41. 41.
    Scaglione, A., Hong, Y.-W.: Opportunistic large arrays: Cooperative transmission in wireless multihop ad hoc networks to reach far distances. IEEE Transactions on Signal Processing 51(8), 2082–2092(2003)Google Scholar
  42. 42.
    Sendonaris, A., Erkip, E., Aazhang, B.: User cooperation diversity–Part I: System description” and “User cooperation diversity–Part II: implementation aspects and performance analysis. IEEE Transactions on Communications 51(11) 1927–1938 and 1939–1948(2003)CrossRefGoogle Scholar
  43. 43.
    Sirkeci-Mergen, B., Scaglione, A.: Randomized space-time coding for distributed cooperative communication. IEEE Transactions on Signal Processing 55(10), 5003–5017 (2007)CrossRefGoogle Scholar
  44. 44.
    Slepian, D., Wolf, J.: Noiseless coding of correlated information sources. IEEE Transactions on Information Theory 19(4), 471–480(1973)Google Scholar
  45. 45.
    Tarokh, V., Jafarkhani, H., Calderbank, A.: Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory 45(5), 1456–1467(1999)MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Tarokh, V., Seshadri, N., Calderbank, A.: Space-time codes for high data rate wireless communication: performance criterion and code construction. IEEE Transactions on Information Theory 44(2), 744–765(1998)MATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Telatar, ˙I.E.: Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications 10(6), 585–595(1999)Google Scholar
  48. 48.
    Tse, D.N.C., Viswanath, P., Zheng, L.: Diversity-multiplexing tradeoff in multiple-access channels. IEEE Transactions on Information Theory 50(9), 1859–1874(2004)CrossRefMathSciNetGoogle Scholar
  49. 49.
    van der Meulen, E.C.:Transmission of information in a T-terminal discret ememoryless channel. Ph.D. thesis, Department ofStatistics, University of California, Berkeley, CA(1968)Google Scholar
  50. 50.
    Van Der Meulen, E.C.: Three-terminal communication channels. Advances in Applied Probability 3(1), 120–154(1971)MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Vishwanath, S., Jindal, N., Goldsmith, A.: Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels. IEEE Transactions on Information Theory 49(10), 2658–2668(2003)CrossRefMathSciNetGoogle Scholar
  52. 52.
    Wang,B.,Zhang,J.,Host-Madsen,A.:Onthecapacity ofMIMO relay channels.IEEE Transactions on Information Theory 51(1), 29–43(2005)Google Scholar
  53. 53.
    Winters, J.H.: On the capacity of radio-communication systems with diversity in a Rayleigh fading environment. IEEE Journal on Selected Areas in Communications 5(5), 871–878(1987)CrossRefGoogle Scholar
  54. 54.
    Wyner,A.,Ziv,J.:The rate-distortion function for source coding with side information at the decoder. IEEE Transactions on Information Theory 22(1), 1–10(1976)Google Scholar
  55. 55.
    Xie, L.-L.,Kumar, P.R.:Anachievable rate for the multiple-level relay channel. IEEE Transactions on Information Theory 51(4), 1348–1358(2005)Google Scholar
  56. 56.
    Yiu, S., Schober, R., Lampe, L.: Distributed space-time block coding. IEEE Transactions on Communications 54(7), 1195–1206(2006)Google Scholar
  57. 57.
    Yuksel, M.,Erkip,E.:Multiple-antenna cooperative wireles ssystems:a diversity-multiplexing tradeoff perspective. IEEE Transactions on Information Theory 53(10), 3371–3393(2007)Google Scholar
  58. 58.
    Zhao, Y., Adve, R., Lim, T.: Improving amplify-and-forward relay networks: optimal power allocation versus selection. In: Proceedings on the IEEE International Symposium on Information Theory(ISIT),pp.1234–1238(2006)Google Scholar
  59. 59.
    Zheng, L., Tse, D.N.C.: Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory 49(5), 1073–1096(2003)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Y.-W. Peter Hong
    • 1
  • Wan-Jen Huang
    • 2
  • C.-C. Jay Kuo
    • 3
  1. 1.Department of Electrical EngineeringNational Tsing Hua UniversityHsinchuTaiwan R.O.C.
  2. 2.Institute of Comm. Engin.National Sun Yat-Sen UniversityKaohsiungTaiwan R.O.C.
  3. 3.Viterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations